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%(a 6,b,c) of analytic functions which unifies aABSTRACT. We study a class M
k

number of classes studied previously by Paatero, Robertson, Pinchuk, Moulis, Mocanu

and others. Thus our class includes convex and starlike functions of order 6,

spirallike functions of order 6 and functions for which zf’ is spirallike of order, functions of boundary rotation utmost k, a-convex functions etc. An integral

representation of Paatero and a variational principle of Robertson for the class

V
k

of functions of bounded boundary rotation, yield some representation theorems

and a variational principle for our class. A consequence of these basic theorems

is a theorem for this class M (a,6,b,c) which unifies some earlier results concerning

the radii of convexity of functions in the class V() of Moulis and those concerning

the radii of starlikeness of functions in the classes U
k

of Pinchuk and U2(8) of

(0)Robertson etc. By applying an estimate of Moulis concerning functions in V
k

we obtain an inequality in the class M
k (a,8,b,c) which will contain an estimate

for the Schwarzian deriative of functions in the class Vk(8) and in particular

the estimate of Moulis for the Schwarzian of functions in V(0).

KEY WORDS AND PHRASES. Convex functions, starlike functions, spirallike functions,

functions of bounded boundary rotation, a-convex functions.
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i. INTRODUCTION.

Let N denote the set of all regular functions f on the unit disc E: zl<
such that f(0) 0, f’(0) and let, for such a function f,

Jf(z) Jf(z) (a,b,c) a[1 + z f"(z) + (1- a) [i- 1 + z f’(z)
b f’(z) c c f (

l
where a, b0 and c0 are complex numbers. Let M(a,8,b,c) denote the class of

all functions f in N such that
2

eijfIRe cosE d8 k (1-6) cos
0

iO
where 0 8 i, /2 /2, z re 0 & r and k 2.

(1.1)

(1.2)
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This class unifies and generalizes various classes studied earlier by V.

Paatero [I-2], M.S. Robertson [3-4], E.J. Moulis [5-6], B. Pinchuk [7-9], K.S.

Padmanabhan and R. Parvatham [i0-II], P.N. Chichra [12], M.A. Nasr [13], G. Lakshma

Reddy [14] and P.T. Mocanu [15]. In particular, convex functions, convex functions

of order 8, starlike functions, starlike functions of order 8, X-splrallike functions,

functions f for which zf’ are X-spirallike, functions of bounded boundary rotations,

zf" zf’
functions f for which Re[e(l +--) + (I-)---] > 0 are all contained in the class

In this note, we study several properties of functions new class,in the

thereby giving a unified approach to proving and at the same time generalizing many of

the results of the earlier authors.

We use the following additional notations throughout our work. If f is N, let

Jf(z) -I e f"(z) i- f’(z)3f f +(z) (z) (,b,c)
z b T() -- f () z

(1.3)

with f(0) defined by continuity,

^2 (v: complex) (I 4)Nf(z)() Nf(z)(,b,c,) f(z) Jf(z)
(so that Nf(z)(l,l,l,) is the Schwarzian of f)

iX -I
d d(X,B) e secX (l-B) (1.5)

X X d

Hf Hf (e,B, b,c) [(f,)/b (f/z)(l-e)/c] (1.6)

2. SOME PRELIMINARY RESULTS.

The following Lemmas are immediate from the definitions (1.1)-(1.6) above and

will be used later.

LEMMA 2.1. If f(z) z + A2z2 + A3z3 + is in N, then

(H)
d 3f(H)

(2.1)

where

J^’ u3A3 uA22_ (2 23f (0) u2A2’ f (0)
2

2 u+uu2
Nf(0)(v) u

3
(A

3 uA2), u3
(2.3)

4e I- 2 I- 6a 2 (I-)
u -- + --- u

2 -- + --c and u
3 -- +

c
(2.4)

3f (0)PROOF. Differentiating (1.6) logarithmically we have (2.1). and 3f(0)
are respectively the constant term and the coefficient of z in the power series

expansion of 0f(z) and to obtain this power series it is enough to substitute the

power series for f in (1.3). Thus (2.2) follows. Substituting (2.2) in (1.4) we

have (2.3).

LEMMA 2.2. If f(z) z + A2z2 + A3z3 + and g(z) z + Az2 + Az3 +
are in N, then

Hf H
A’

(a’,B’,b’,c’)X(,B,b,c)
g

if and only if

d 3f(a,b,c) d’3 (e’,b,’c’), d’ d’(X’,8’).g

(2.5)

(2.6)
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Further, if f and g satisfy (2.5) or (2.6), then

il if’
see %(e Jf 8 cos %) see %’(e J 8’ cos

Re Re $ (2.7)
I-8 l-B’

dNf(a,b,c,) d’N (a’,b’,c’,’) (2.8)
g

where v and v’ are complex numbers satisfying /d ’/d’,

d(u3A3 uA) d’(u3A3du2A2 d’u2A2 u A2

,2
du

3
(A

3 fiA) d’u
3 (A fi’A

2

(2.9)

(2.10)

where 6 and 6’ are complex numbers satisfying

a’u 
Here u’, u 2’ and u3’ are as given by (2.4) with a,b,c replaced by a’,b’,c’ respectively.

PROOF. Equivalence of (2.5) and (2.6) are immediate from (2.1). On taking real

parts in (2.8) and using (1.3) we have (2.7). We get (2.8) on differentiating (2.6)

and using (1.4). Again from (2.6) and (2.2) we have (2.9). Finally (2.10) is

obtained on using (2.3) in (2.8).

LEMMA 2.3. If f and g are in N and if

H
%’

(’ 8’ b’,c’) Constant (I + z) -2
g Hf() (a,8,b,c) (2.11)

where z+___a al < i, then
l+az

d
2 + d(l-lal 2) 3 (2.12)

g l+z + z 2 $

d(l- la12) 2

(I+ az)4_ Nf()(,b,c,) d’Ng(z)(’,b’ ,CW,

(I- lal 2) a]f a+ 2 ad(l 2 /d) () (2 13)
d

a(l + az) 2 + az

where /d ’/d’.

PROOF. Logarithmic differentiation of (2.11) yields (2.12). Differentiating

(2.12) and subtracting from the resulting equation ’/d’ times the square of (2.12)

and simplifying we get (2.13).

Let B
k

(k 2) denote the set of all real valued functions m(t) of bounded

variation on [0,2] such that

2 2
f dm(t) 2 and f Idm(t) k. (2.14)

0 0

The following is a result of Paatero [I] reformulated in terms of our notations.

LEMMA 2.4. A function g is in

__
(i,0,i,I) (=Vk) if and only if there

exists m(t) in B
k

such that
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H(l,O,l,l) exp f log (l-ze-it) dm(t) (2.15)
g 0

X(a b c)3. SOME BASIC RESULTS IN M
k

The following representation theorem is a simple consequence of the definition of

X( Bb c)the class M
k

THEOREM 3.1. Let (%,,B,b,c), (%’,’,8’,b’,c’) and k be given. If f is in

and if g is defined by

H
X’
g

(a’,’,b’,c’) Hf(,B,b,c)

then g is in (e’,B’,b’,c’).

PROOF. The hypothesis implies (2.7). Taking absolute values on both sides of

(2.7) and integrating with respect to 8 between 0 and 2, we have the result

immediately.

The above theorem contains as special cases (i) Theorem 3 in [5] concerning the

class V
k (1,O,l,1), (ii) Theorem 5 in [lI] concerning the ciass Vk(g),

(iii) Lemmas 2, 3 and 4 in [6] concerning the class V(13) and (iv) Lemmas 2,3,4,5,6

[14] concerning the classes V(B,b) and U(B).and 9 in

X(a B,b c) thenCOROLLARY 3. i. If f is in M
k

,Id]f(0) _-< k (3.1)

with equality for f satisfying

k

Hf%(a,B,b,c) (1-Z)k
-+i
2

(l+z)

(3.2)

PROOF. By Theorem 3.1, there exists a g in (I,0,I,I) V
k

for which (2.6)

holds with %’ B’ 0, ’ b’ I. (3.1) now follows from (2.2) and (2.9) and on

’I k/2. Now, if g’ is given by the rightusing the Pick’s estimate [16] namely IA2
side of (3.2) and g(O) 0, then g is in V

k (I,0,I,I) [6] and therefore, by

Theorem 3.1, f given by (3.2) is in <(,B,b,c). That (3.1) is equality for this

f follows easily.

The following representation theorem is a direct consequence of Paatero’s Lemma

stated in Lemma 2.4 above.

THEOREM 3.2. If f is in K(a,B,b,c) then there exists m(t) in Bk such

that
2

-it
HfX( B,b c) exp f log(l-ze dm(t) (3 3)

0
Conversely, given m(t) in B

k
and if f is defined by (3.3), then f is in

PROOF. If f is in (,,b,c) let us define g by

H(I 0,I i)
X

Hf(a,B,b,c). (3.4)
g

Then, by Theorem 3.1, g is in (l,0,l,l). Hence by Lemma 2.4 we get (2.15) which

when read with (3.4) yields (3.3).
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Conversely, given m(t) in B
k

and f as in (3.3), we have by Lemma 2.4 that

and g satisfy (3.4) for g in V
k

given by (2.15). By Theorem 3.1, (3.4)

that f is in (a,B,b,c).implies

The above Theorem contains various integral representation theorems obtained

previously, for example, Theorem and the integral representation in Corollary 4 in

[11], Theorem in [6], Theorems and 5 in [14]. Further, if f is in the Mocanu

o(a 0,1,1) [15] then we have the representationclass M(a) M
2

2
f’ (f/z) I- exp- f log(l-ze-it) din(t) for m(t) in B2.

0

THEOREM 3.3. Let (Xj,aj,gj,bj,cj), j 1,2,3 and k be given. Then fl is in

’ (l,l,bl,Cl) if and only if there are functions fj in Mj (aj,Bj,bj,cj)
2,3 such that

X,
(a g ,b cHf I’ l’

Hf%2 (k+2)/4

2
(a2’ B2’b2’c2)

Hf3 B3 b c
3
(3’ 3’ 3

(k-2)/4

PROOF. The Theorem follows immediately from Theorem 3.2 on using the representa-

tion (Brannan [17]) that m(t) ((k+2)/4)ml(t) ((k-2)/4)m2(t) where m(t) is in

B
k

and ml(t) and m2(t) are in B2.
Special cases of the above theorem are Theorem 4 in [5] and its corollary,

Corollary in [Ii], Theorem 2 in [6] and Theorem 2 in [14]. Theorem 6 in [14] is

also a special case of the above theorem on using the fact that the functions S(z)

and zitS(z) are together starlike of order B if t is real.

COROLLARY 3.2. If f is in (a,,b,c), then

(l-r)(k-2)/2 iHf( ,b,c)
(l+r)(k-2)/2

(1+r) (k+2)/2 (l-r) (k+2)/2 (3.5)

larg Hf(a,B,b c) k sin
-I

r. (3.6)

PROOF. Theorem (3.3) gives that there are convex functions g and h such that

%(a b,c)
(g,)(k+2)/4

Hf (h’)(k-2)/4
Using in this, well known distorsion and rotation theorems concerning convex functions

namely

(i+r)-2 l’(z)l _-< (l_r) -2

larg ’(z) 2 sin-lr,

we immediately have (3.5) and (3.6).

One can easily check that (3.5) becomes equality on taking the function defined by

(3.2) and then putting z +r and z -r respectively.

Inequalities (3.5) contain as special cases some of the known distorsion and

rotation theorems. For example those found in [8], [9], [ii], and [14].
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4. A VARIATIONAL FORMULA AND TWO MAIN INEQUALITIES.

THEOREM 4.1. Let lal and (z) (z+a)/(l+z), Izl < I. Let f be in

(,B,b,c). Then F(z) defined by

F(O) 0, H%F (a’ ’)(z)
,8 ,b ,c

is in M
k

(a’,8’,b’,c’).

Hf() (ct, B,b,c)

(l+az) Hf(a)(a,B,b,c)
(4.1)

PROOF. By Theorem 3.1, there exists g in <(I,0,I,I) V
k given by (3.4).

Let G(z) be defined by

G(0) 0, G(z) g((z)) g(a)

(l-lal 2) g’(a)
(4.2)

Then by a variational principle of Robertson [4], G(z) is in Vk. By Theorem 3.1

again, there exists F(z) in (a’,g’,b’,c’) such that

HF,z,,, (a’ ,8’ ,b’ ,c’) HG,z., (1,0,1,1) G’. (z).

Using (4.2) and then (3.4) in this gives (4.1).

As special cases, the above Theorem contains Lemma 3 of [II], Theorem 6 of [5],

Lemma 5 of [6] and Lemma 7 of [14].

The following Theorem contains as special cases many earlier results concerning

radii of convexity and those concerning radii of starlikeness.

THEOREM 4.2. If f is in Mk(=,8,b,c), then

[(I- Izl 2) zf(z)- 2 Izlmd-ll k [zd-ll (4.3)

and for any nonzero complex number

Re Jf(z)(a’b/’c/) q(r) > 0 (4.4)
2

r

when r Izl < R, where

2
Q(r) air + a2r

with a kld-ll, a
2

2 Re(d-I) -I and

a /a 4a
2

2a
2IR=

k
-I

-I
2 Re(d #

-1
2 Re(d 1.

(4.5)

(4.6)

PROOF. We get (4.3) on choosing g to satisfy (2.11) putting z 0 in (2.12),

using (3.1) and finally changing a to z. Now, we have from (1.3)

+ zf(z)(a,b,c), # 0Jf(z) (a,b/,c/)
and therefore,

Re Jf(z)(a’b/’c/) + Re zf(z)(a,b,c)
which yields the first part of (4.4) on using (4.3). The second part of (4.4) follows

from the standard result for positivity of a quadratic form in r. Lastly, it is easy
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to check that the property R is equivalent to

2 Re(d-I) + a
2

a kld-ll
which is true.

REMARKS 4.2. (i) The sharp radius of convexity of f in V2(81 given by

Theorem 2 of [12] is a special case of (4.6). The radius of convexity of f in

Vk(8,b) (l,,b,l) given by (4.6) with I, b is better than the one found

’r2 where a is as inin Theorem 3 of [14]. In fact, Q(r) (r) alr a
2

(4.5) and a
2 21d-ll + I, the radius of positivity of (r) being

/a-al + 2 + 4 a
2

2a
which gives the result of Theorem 3 of [14] on putting I, b. Clearly the

radius of positlvity of Q(r) is bigger than that of (rl. (ii) The Sharp radius of

convexity of f in Vk(B) found in Theorem 3 of [II] is given by (4.6) with

b and 0. In fact, more generally, it is easy to see in (4.4) that

Re Jf(z)(,b/,c/) 0

-Ifor f given by (3.2) and z R provided d is positive real. (iii) The radius

of starlikeness of f in Uk(,c) (O,,l,c) is given by (4.6) with O, c.

Putting c further, we get an improvement over Theorem 7 of [14]. (iv) We can

(u 0,I,I)get the radius of "s-convexity" of functions in the Mocanu class M() M
2

on putting k 2, O, b c in (4.6). (vl Inequality (4.3) contains

(= b I) Theorem 3 of [6].

In proving the inequality (4.7) below, we use an estimate of Moulls [5] for

I3-QA.I,- Q > 2/3, related to functions f(z) z + A2z2 + A3z3 + in the class

V
k (I,0,I,I) and thereby obtain a corresponding estimate for functions in the

more general class (,8,b,c). The inequality (4.7) is then applied to obtain the

estimate (4.9) which contains as special cases Moulis’s estimate [5] for the

Schwarzianderivative of functions in Vk(8) (Theorem 4 of [II]).

LEMMA 4.1. If f is in (,8,b,c) then

2INf(0)(,b,c,) 6(1-81 (,k,(l+(l-811, (>01 (4.7)

where J(%,k,) is (in slightly different notation) the J-function of Moulis given

by

(I/3)cos % {(3-21(k2cos%)/4 + (k/21 Isin% I- cos}, k> 4/(3-21

](%,k,@) (4.81

(I/3)cos % {(k-l) cos %+ (k/2) Isinl }, k4/(3Q-2)

PROOF. By Theorem 3.1 we can find g in (I,0,I,I) such that (2.5) holds with

’ b’ I, ’ % and 8’ 0. Thus by (2.8) of Lemma 2.2 and 2.3 of Lemma 2.1, we

have

INf(o)(,b,c,) (I ) INg(o)(l,l,l,(l 8))I

’21 ’ (213)(I+(I-8))6(1 8) liA3, ,A2
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which gives (4.7) on using Moulis’s result [5] namely,

’21 (,k fi’) fi’ > 2/3IA fi’A
2

where J is as in (4.8).

THEOREM 4.3. If f is in M(a,B,b,c), then

,INf(z)(a,b,c,)l <= 6(I-B) (%,k,(2/3)(I+(I-B))),, + 2[z/dll 1-2/dl
(I- Iz12) 2

where 0 and J is as given by (4.8) above.

PROOF. From (4.3) we easily have

a21 lad-ll (k +I(I la12) aJf(a) d

(4.9)

Using this in (2.13) with z 0, %’ %, B’ B, a’ a, b’ b, c’ c and then

using Lemma 4.1 and finally replacing a by z we have (4.9).
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