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ABSTRACT. We prove that the necessary and sufficient condition for the state equa-

tion of a finite automaton M to have a rational solution is that the lexicographical

Gdel numbers of the strings belonging to each of the end-sets of M form an ultimately

periodic set. A method of determining the existence of a rational solution of the

state equation is also given.
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I. INTRODUCTION.

In this paper we contribute some interesting results on the state space approach

to finite automata following the work of Lee [2], Yang and Huang [I].

A state space approach was proposed by Lee [2] as an alternative way to analyze

finite automata. The approach is based on the transformation of a set of words into

a formal power series over the field of integers modulo 2 and also on obtaining a

state equation in some linear space associated with an automation. Some useful

algorithms associated with the state space approach were discussed by Yang and

Huang [I] along with a condition for the state equation to have a rational solution

when the automaton has 2
k

states (k 2,3).

The question of existence of a rational solution of the state equation is

certainly an interesting one and it is not difficult to see that the condition given

by Yang and Huang [I] is by no means necessary even for automata with 4 states only.

One of the main objectives of our present work is to give the necessary and

sufficient condition for the state equation of an automaton to have a rational

solution and thus providing a complete answer to the question left open by Yang and

Huang [i]. We also show that the condition obtained in [i] is a special case of our

theorem.

Furthermore, we discuss a practical method for determining whether the state

equation of an automaton has a rational solution in case it exists. Since there is

no known algebraic method for solving state equations in general, our method is use-

ful for obtaining the closed form solution (i.e. rational solution) whenever it exists.
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2. PRELIMINARIES.

Some basic definitions and results necessary for our work are treated very

concisely in the following. The reader may refer to our references for a detailed

discussion.

DEFINITION i. A finite automaton (deterministic) is a 4-tuple M (Q,Z,6,ql),
where

i) Q is a finite non-empty set of states,

ii) Z is a finite non-empty set of inputs,

iii) 6 is a function from QE to Q, called the transition function and

iv) ql is the initial state.,
Let Z denote the set of all possible strings consisting of symbols from Z alongwith

the empty string A. It is well-known that the transition function 6 can be extended

from Q Z to Q Z* as

6(qi ’A) qi

and 6(Qi,wo 6(6(qi,w),o

where qi E Q and A,w,o E Z*.

DEFINITION 2. The end-set E(q) of a state q E Q is defined as

E(q) {w E Z* 6(ql,w) q

Note that A E E(ql) and e E(q) Z*. Also, for qi,qj E Q we have E(qi) N E(qj)qQ
iff i # j. In the following, without any loss of generality, we restrict ourselves

to the binary alphabet Z {0,I} Also, N denotes the set of non-negative integers.

Throughout the paper we will use a specific enumeration Z* N of the strings

over {0,I} which is based on the lexicographic ordering of Z*. We define (A) 0

and for w E E* with (w) n, (w.O) 2n+l and (w.l) 2n+2. The function is

called a lexicographic GSdel numbering of Z*. Furthermore, let F denote the field of

integers modulo 2, also denoted by GF(2).

DEFINITION 3. The field of extended formal power series over F, denoted by F<x>,

is the set of all expression of the form

f(x) akxk a
k

E F and i E N or -N
k=l

containing at most a finite number of non-zero coefficients a
k

such that k is negative.

DEFINITION 4. Let M (Q,Z,6,ql) be a finite automaton. For q E Q, the

representation

(w)(E(q)) x
weE(q)

is called the Y-representation of the end-set E(q).
2

It was noted in [1,2] that the mapping D F<x> F<x> defined by Dz z for

z E F<x> is a homomorphism of F<x>. Also, if z (Zl,Z 2 Zn) is an element of

(F<x>) n, then the mapping D can naturally be extended as
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Dz (Dz I,Dz 2
Dzn)

where denotes transposition.

Let Q {ql,q2, qn be the states of a finite automaton. Let E
i E(qi) and

z
i (Ei). Then it is known that [1,2]

(ok)
z x Dz. +

6(qj ,Ok)=ql

I(ok)
and z. [ x Dz. i 2,3 n.

1

6(qj, Ok)=qi

where o
k

e Z. The above equations can be written in the matrix form as

Z=ADZ+b

where Z (Zl,Z 2 z )" and b (I,0 0) .
n

DEFINITION 5. The matrix A is called the transition matrix of the automaton and

the equation Z ADZ + b is called the state equation of the automaton.

’Note that the matrix A is a square matrix of size n, where n IQI the cardinality
2

of the set Q. The possible non-zero elements of A are x, x and x+x2 and it is easy

to see that

Aij x if 6(qj,O) qi

2
if 6(qj,l) qi

x+x2 if 6(qj,0) 6(qj,l) qi

0 if there is not transition from qj to qi on either input.

By virtue of the deterministic nature of M, the sum of the non-zero elements in each

column of A is x+x2.
Lee [2] showed that the solution of a state equation always exists and is unique. In

particular, the solution is Z (Zl,Z2 Zn)" where z
i (Ei), E

i E(qi) being the

end-set of the state qi" For details regarding the existence of the solution, which

happens to be the fixed point of the equation f(Z) ADZ + b, the reader is referred

to [2]. We note that for each i, z
i

is a formal power series and that

n n. z and z2i
i=l

i (l+x)
i=l (l+x2)

It is interesting to note that sometimes the formal power series representation for

each z. can be expressed in the form of a rational function. In such a case, we say
1

that the state equation has a rational solution.

The question of existence of a rational solution of a state equation was

originally raised by Yang and Huang [i]. A condition for the existence was obtained

for automata with 4 or 8 states (more generally, for automata with n=2
k states). The
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condition imposes a particular block structure on the transition matrix A of the

automaton. In the following, we obtain a necessary and sufficient condition for the

state equation of a finite automaton to have a rational solution. We also show that

the sufficient condition obtained in [I] is only a particular situation of our

theorem. We also discuss, given an arbitrary finite automaton how to determine

whether the corresponding state equation has a rational solution or not.

3. MAIN RESULTS.

We begin this section with examples of finite automata whose state equations have

rational solutions but the sufficient conditions given in [i] do not hold.

EXAMPLE I.

ql

q2

q3

q4

0

q4

ql

ql

q4

Consider the automaton M (Q,Z,6,ql)

q3

q2 0 0

q2

q2

whose transition matrix is

A 0 x x 0

2 2 2
0 X X X

x
2

0 0 0

x 0 0 x

Obviously, the matrix A violates part and consequently violates part 2 of the

sufficient condition in Theorem 2 of [i]. Let Z (zl,z2,z3,z4) be the unique

solution of the state equation. The solution satisfies the state equation (written

explicitly)

z x(z22+z32 +

2 2+z 2+z42z
2 x (z

2 3

2 2
z
3

x z

z
4 X(Zl2+Z42)

and is rational in nature and has the following form viz.

z + x + x
z
2 + x2+x4+

(l+x4)
4 32

x
4 x xz

3
x + + z

4
x +

+x8 +x4

l+x2+x6
(l+x8)
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EXAMPLE 2. Consider the automaton M (Q,Z,6,q I)

0

ql q2

q2 q2

q3 q4

q4 q4

q <
ql

q3

q3

whose transition matrix is

2 2
X XA

x x 0 0

2 2
0 0 x x

0 0 x x

Thus the matrix A satisfies part but violates part 2 of the sufficient conditions

given in [i]. The state equation is given by the system

2 2+z 2
z x (z

2
+

2
z
2

x (z12+z2)
2 2+z42z

3
x (z

3

z
4

z (z32+z42)
This system splits into the homogeneous part of z

3
and z

4
whose associated states

q3 and q4 are unreachable and which has trivial solution z
3

z
4

O, and into the

non-homogeneous part of z and z
2
whose solutions have the rational values

Zl 2+x

X

z2 2+x

In the following, we will see that the reason why the state equation of the above

automaton has a rational solution is that the GSdel numbers of the strings belonging

to each of the end-sets of the four states form an ultimately periodic set. First,

we have the definition of an ultimately periodic set.

DEFINITION 6. A set X of natural numbers is said to be ultimately periodic if X

is finite or if there exist two integers k
0

0 and p > 0 such that if x k
0

then

x e X if and only if x + p e X.
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We say that p is a period of the (infinite) set X. Note that a set X of period p

N
+

has also period k p, for any k e However, in the following we only consider the

smallest p for any set X.

In order to prove our main theorem, we need the following Lemma.

LEMMA. Let f(x) be a polynomial with coefficients in GF(2) such that x does not

divide f(x). Then there exists an integer k such that f(x) divides (I +xk).
For a proof of the above lemma, we refer the reader to Van der Waerden [4]. Some

applications of the above lemma in the theory of linear sequential machines can be

found in Harrison [3]. We are now ready to prove our main result.

THEOREM I. Let M (Q,Z,6,q I) be a finite automaton. A necessary and sufficient

condition for the state equation of M to have a rational solution is that the GSdel

numbers of the strings in each of the end-sets of the states of M form an ultimately

periodic set.

PROOF. Fix qi e Q and consider the GSdel numbers of the strings in the end-set

E
i E(qi). Let M

i {nl,n2 be the set consisting of the GSdel numbers of the

strings in E
i {Xl,X2 Hence, n

k
U(xk) and without any loss of generality

we may assume that n
k

< nk+ for each k. If M
i

is finite, then Z.l (Ei is a

rational solution. If M. is infinite and ultimately periodic with period p 0, then

there exists an integer k
0

such that for all k ->- k0, nk+p e M
i
exactly when n

k
e M

i-

Let{nko,nk nk} be the set of consecutive integers belonging to M
i

such that
r

nk0 nkl < <nkr <nk0 + p Then it follows that

nk
0

nk n
knkO_ rnl n2 x +x + +x

+ xz
i

(Ei) x + + x +
+xp

observing that the formal power series + x
p + x

2p + is represented by
l+x

p
Clearly, each z. has a rational function representation.

1

Conversely, assume that Z (Zl,Z 2 Zn)" is a rational solution of the state

equation of a finite automaton. Then we can write each z
i

as

fi (x)
z
i

ei(x) or z
i

ei(x) +
gi (x)

where ei(x),fi(x and gi(x) are formal polynomials with coefficients in GF(2),

0 deg(fi(x)) < deg(gi(x)) and the rational function f1(x)/gi(x) is in its lowest

terms.

In the first case, the end-set E(qi) is finite so that its associated set of GSdel

numbers is periodic. For the second case, we claim that gi(x) must be of the form

+ hi(x), where hi(x) is divisible by x.

To see this, assume on the contrary that gi(x) xm(l + hi(x)), m > O. Since fi(x)
and gi(x) are relatively prime, we can write fi(x) + ri(x) where ri(x) is

k
divisible by x. Let k be the smallest integer such that + hi(x) divides + x as

given by the lemma. Then we can write

z
i

ei(x) +
(l+r

i
(x)) (l+s

i
(x))

m
x l+xk)
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where l+x
k

(l+si(x))(l+hi(x)). This implies that the formal power series represen-

tation of z
i
contains the term i/xm, which is a contradiction for m > O. Hence m 0

and therefore

fi (x) ti(x)
z
i

ei(x) +
l+hi(x)

ei(x) +
l+xk

and deg(ti(x)) < k. Since ti(x) is a polynomial over GF(2), it follows that the

Gdel numbers of the strings belonging to the end-set of the state qi form a periodic

(ultimately) set with period k. This completes our proof.

Next, we proceed to show that the sufficient conditions of [I] imply that Gdel

numbers of the strings belonging to each of the end-sets form a periodic set. As

before, we let E {0,I}.
Let M (Q,E,6,ql) be a finite automaton. Define

C {q QI 6(q’,0) q for some q’ e Q}
o

and C {q e QI 6(q’,l) q for some q’ e Q}

.Note that, in general CO and C need not be disjoint. The following theorem

generalizes the sufficient conditions of [I] in the case when the automaton has 4

states.

THEOREM 2. Let M (Q,E,6,ql) be a 4-state automaton. Let CO and C be as

defined above such that the conditions IC01 ICll 2, CO U C Q hold. Further-

more, assume that the state equation has the form

i12
+ qi2+ x [ Zk2 and z12 d x . Zk

2
if CO {qiZil dlil qkeC0 qkeCl and

z +x2 [ Zk2 if C qj qj+ x
2 [ Zk2 and

J 2 dlj
2 2

zj dlj
qkCo qkC1

where dll is a constant equal to iff i=l and 0 otherwise. Then the state equation

of M has a rational solution.
4

PROOF. Since zi2 l+x2
we have

i=l

x[ z
i

+ x__ or depending on whether ql e CO or not and
l+x

2
l+x

2
qiCo

2 2
[ z

i
+ x_ or depending on whether ql e C1 or not ql being

l+x
2

l+x
2

qieCl

the start state of the automaton. Since D is a homomorphism of on F<x>, E zi2 and

2 qiCo
z. are rational so that each z., i 4, has a rational
1 1

qieC1
expression. Note that the exponents of x in the formal power series corresponding to

the rational function form a periodic set of period 2 and as a consequence the
l+x
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set of Gdel numbers of the strings in each of the end-sets is periodic with period 4.

It is not difficult to see that an extension of the above theorem in the case of

an automaton with n=2
k

states implies that the Gdel numbers of the strings in each of

the end-sets is periodic with period 2k, k=2,3,.., and each component of the rational

solution of the state equation is of the form f(x)/(l+x2k).
4. DETERMINING THE EXISTENCE OF A RATIONAL SOLUTION.

In this section we provide an answer to the following question: "Given a finite

automaton M (Q,E,6,ql) is it possible to determine whether the corresponding state

equation has a rational solution?"

We show that the answer to the above question is ’yes’. Let E {0,I} and also

let us assume without any loss of generality that E(q) is nfinite for each q e Q.

The case where not all E(q)’s are infinite can be handled analogously by considering

only those q’s for which E(q) is infinite.

Let E* L
0

U L U L
2

U where Li is the set consisting of all binary

strings of length i. Note that e
0

{A} and ILil 2 i. Also, it is possible to

enumerate the elements of Lo as

L
i {wi0,Wil wi,2i_ I}

where Wik is the binary encoding of the integer k (0 k 2i-I) using i bits and

consequently we have

2(2i-I2i-I (Wik)

for each k.

Assume that the state equation corresponding to M has a rational solution. Since

the set of GSdel numbers of the strings belonging to each end-set E(q) is ultimately

periodic, there exists an integer

p l.c.m {pl,P2 pn

an integer N max {NI,N2,...,Nn

such that for all k a N whenever x e E(q) with (x) k then y e E(q) where (y) =k+p.

Here, Pi is the smallest non-zero period of the set consisting of the Gdel numbers of

the strings in the end-set E(qi) and N. is the lower bound of periodicity. Let m be
1

the smallest index for which there exists an integer k, 0 < k 2m-I and an integer j,

n, such that

6(ql,Wm0) qj

and 6 (q ,Wink) qj

and moreover, if t k with 6(ql,Wmt) qj then the sequence

6(q l,wm0), 6(q l,wml) 6(q l,wmt)

does not contain each q e Q at least once. We claim that
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p (Wmk) (Wm0)

To see this, let v be a string long enough such that (v) > N and 6(ql,v) ql"
Consider the set

v.L {v V.Wml, v. 2mm "WmO Wm,

which is obtained by concatenating L with the string v. Note that the behavior of
m

M over L is the same as its behavior over v.L in the sense that
m m

6(ql’Wms) 6(ql’V’Wms)

for each s 0,1,2 2m-l.
Since, (v.w > N for each s and the GSdel numbers of the strings v.w are

ms ms

consecutive for s 0,1,2 2m-l, the pattern in which final states are reached by

the strings V.Wm0,V.Wml,V.Wm2 ,V.Wmk (starting with the initial state ql is

repeated forever and the same argurment applies to the sequence WmO,Wml Wmk also.

It is now clear that for each qi e Q, (Ei) may be written in the form

bi(x)
a
i
(x) +

l+x
p

where the polynomial a.(x) arises from the contribution of the strings in E(qi) before
1

the periodic behavior starts. Note that the above expression need not be in the

reduced form and deg(bi(x)) may not be less that p. However, a suitable equivalent

reduced form is easily obtainable. Since the solution of a state equation is

unique, substituting the (Ei)’s back into the state equation we can decide whether

the state equation has a rational solution or not.

5. CONCLUDING REMARKS.

Since there is no analytic procedure available for solving state equations in

general, the relationship between rational solutions and the periodic behavior of the

GSdel numbers of strings belonging to the end-sets gives us an insight into how to

obtain the closed form solution (i.e. rational solution) of a state equation whenever

it exists.

Finally, we note that even if the state equation of an automaton M (Q,Z,6,q I)
does not have a rational solution, it is quite possible for Q to have a subset Q’

such that for each q’ e Q’ the GSdel numbers of the strings in E(q’) form an

ultimately periodic set. To see this, consider the 3-state automaton whose transition

matrix is

0 x x

X X X

x
2

0 0

If Q {ql,q2,q3 }, then it is easy to see that only the set consisting of the Gdel

numbers of strings belonging to E(q2) is periodic with period 2 since all the strings

ending ina 0 belong to E(q2). The fact that the corresponding state equation does

not have a rational solution follows easily by using our method discussed in section 4.
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