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ABSTRACT. We consider the generalized heat equation of nth order +
r @r -Ur

@__u If the initial temperature is an even power function then the heat transform
@t

with the source solution as the kernel gives the heat polynomial. We discuss various

properties of the heat polynomial and its Appell transform. Also, we give series

representation of the heat transform when the initial temperature is a power function.
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I. INTRODUCTION.

In this paper we shall establish various properties of the polynomial solutions
th

and its Appell transforms of the generalized heat equation of the n order,
22u n-1 @u a @u

--r + --ur r b-
r

2 2 2 x2where r Xl + x2 + +
n

Also we shall give a series expansion of the

generalized

functions.

temperature in terms of Laguerre polynomials and confluent hypergeometric

Most of the results derived here are similar to the ones found in [4 & 5],

which are for the less general equation

@2u
x @x

which in turn is a generalization of the ordinary heat equation, [7]

@2u @u

a-x --These known results can be considered as special cases of our more general results,

when a 0 and n I.

2. PRELIHINARY RESULTS.

Consider the equation

4 F(r,S)
n

2 2 x2 l(r/Xn)where r x I + x + +
n
and 8 tan- Then we have
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1

r2sinn.-20
sinn-20

Suppose the solution is of the type

then

r(r,S) u(r,t)p(S),

p(S).

Letting
1 d n--2.dp

p()sin_2 [stn ]
2 (2.l)

we finally have
2-u 2u @u a.--+ -ur @r

or r
(2.2)

where n 2u + I, the generalized heat equation. Now from (2.1), we have
l d n-2 }[sin 0

dp ._2p(O)
sinn-2s ]

d2p dp 2or + (n-2)cot S - p

Let cos O, then from above, we obtain

d2p
(n-1) dp 2(1-r2)--- -a p

d
which has a solution

1

p() (_)-P’ (),
l(n_3), a2 mwhere m (u-m)(u+m+l) and Pu() is the Legendre function of the first

kind, [2,p.122].

(2.2) as

Also by elementary methods [cf. 6], we can

u(r,t)
O

U(s,r: t)u(s,O)ds,

find the solution of

where

where

kind.

(2.2).

is defined by

1 u+ -u (s2+r2)
I [sr]U(s,r:t) s r e /[], (2.3)

2+ a and I (z), the usual modified Bessel function of the first

We shall call the functioon U to be the source solution of the heat equation

If U is considered as the kernel, then for a suitable f, its heat transform F

rkF(r’t) fO U(s’r:t)skf(s)ds’
1where k + - u and F(r,O) f(r), the initial temperature. Numerous properties

of the heat transform have been given in [6]. We note.that its inversion is given by

rkf(r) U(s,ir:t)(s/i)kF(is,t)ds. (2.4)
0

Suppose now that the initial temperature is the power function

f(r) r m real and positive, then from (2.3), its heat transform,

P y(r,t) f U(s,r,:t)sk+mds
m, 0

r( + + 1) 1

/’(.u + 1) (4t)mrk IF1 -m;

(2.5)
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and

-I, t > O, [8 p.394]. Thus giving a solution of (2.2) involving the

Hypergeometric function 1F1 As a special ease, if

m 2n, n 0,1,2,...

then

n [x2
p

P2n,/(r, t) n! (4t)nrkLt-r2/4t)n (4t)nrkp=oZ r.+p+l)r"+n+l) } [I (2.6)

defining the heat polomial of degree 2n in r and of degree n in t, nvolvin the

Laerre polial. If we let k O, we have the special case given in [4].
Next we define the Apll trsfo of P ,(r,t), m real d positive

Wm,(r,t) lp[,(r,_m t)]

1

where H the Green’s fction, is defined by

+u+
U(s,r:t) s r/t)k(s,r’t),=

s2+r2
tk-I 4 [s]M (s,r:t) e I (2.7)

2(sr)

It c be seen readily that

Wm,(r,t) N (0 r’t)t-kP,(r,-t). (.a)

1
-r/4t1

therefore we c write

W (r,t) i t-(m+p+l)e-r2/4t P (r,-t),

I

In thi ectin e 11 etblih vri reult invling the fctin

Pn,(r,t) nd it lppeII trf 2n,(r,t). ging the

is an ey matter to calculate the folling estites:

P2n,(r,t) O(r2n+k) r

n

P2n (r,t)= 0[]
L 1. For 0 x < m, t > O,

k+2n

0 2n,

PF. Usin the ove estimates, note that the lntesral converses. N, usin$

twice, we have,(2 6) the definition of P2n,

f (s,r:t)P2n (s,-t)ds
n r(,+n+l) (_4t)n-pE F(y+p+l)

U(s’r:t)sk+2Pds
p=O 0
n
2

f("+n+l) (-4t)n-P [;1 (r,t)
F (p+p+1 P2p, p

p=O



396 c. NASIM

Z (-4t) r(#+m+l (4t) r
p=O /’(#/P+]

(-I)n r(+n*l)(4t)n- r (-1)p

N conJ.der the nne 8

p=m i=O ti+mJ

Thus the nner s s 0 f 0 d I if 0 .e. f m n.
k+2nreduces to r d heBce

,(
k+

U(s,r:t)P2n s,-t) r
0

desired.

The equation (3.1) gives us inversion foula of (2.5) with m 2n.

derive a generating function for P2n,p(r,t)
LEMA 2. 1For 0

_
x < =, < t < =, y < ,

2
n k ry

Z Y r

n=O P2n y(r,t) w- e
l-4yt

Let t > O. Using (2.5) and (2.3), we have
n

Y oU(S,r: t)sk+2ndsZ Y P2n,(r’t) Z
n=O n=O

k
(R) (s2y)n

U(s,r’t)s Z
n=O n:

skes2y
/ U(s,r:t)
0

PR(X)F.

I
,k=-u+.

ds

Thearefore

[8,p.394] as required.

k+v+ -s2( -y) -s2( y)

0 0
k+2nIf t O, the result can easily be computed, since P2n,y(r,O) r

(3.2)

(3.2),

We now

we use the fact that

The interchange of summation and integration is valid since

For t < O,

P2n,u(r, t).

LEMA 3. For t_> O, Iz[ < t, and k tt- u + ,
n k

Z W2n,(r,t) H(O,r’t+4z),
n=O

(3.4)

Now we give a generating function for W2n,/a(r,t), the Appell transform of

for the case t > O.

from its representation given in (2.6). The lemma is then proved on the same lines as

2n-k
P2n,(r,-t) i P2n,g(ir,t) (3.3)
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P)OF.

utely when [z[ t. Using (2.8), we haveabso

z 1

n=0
W2n’(r’t) H(0,r’t)t-k n=0 (z/t) P2n,(r’-t)

2
r

k

l H,(0,r:t+4z),
due to Lena 2 d ming e of the definition of H given by (2.9).

If we expd the right hd side of (3.4) by Taylor series in pers of z,

have

[]k (4z)n []n [[]kH(Or
H(O,r: t+4z) n=02 n r: t)

On co=paring this series with the series on the left hand side of (3.4), we tain

Note that r t) 0W2n,/( teJ
as n , and hence the series converges

we

n

Hg(0,r:t)]
1-- _r2/4t

e
22"+Ir(+1)

r(+) 0

1

(-lr(+l))n22n- u u2n++le_tr J(ru) du, (3.5)

giving integral representation for W2n,(r,t).
Also we give other generating fctions for the fction P2n,(r,t) d its

Appell trsfo W2n,y(r,t). We shall simply write d the results, which c be

proved folling a similar alysis as ed for the L 2 d 3 ove.
L 4. For < t < d all complex z,

12n 4tz2Z z (r,t) z- r e I (2xz).
n=0 nr(n+l) P2n,

5. For < t < d all cplex z,
2n k

n=O nr(n+l)

N we shall prove iortt property of the sets of fctions P2n,(r,t) d

W2n,(r,t) d sh tt they fo a biorthogonal syst.

TO. For t > O,

P,(’-t)n,.(x’-t) r(l)’ n

ere i tge irdelt

P. gin (.8),
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10 H(O,x t)t-2n-" (x,-t)P2m,(x _t)x2UdxP2n,/a

x
21 tm-n-/a-ln’m"(-4)m+n f0 x2/a+l e-x2/4t L/afX2]L/a[]dx, (3.6)22/a+Ir(/a+l) ntl’J m

due to (2.6).

The integral on the right handside of (3.6) with a change of variable can be
written as, [3,p. I88].

22/a+1 t/a+ 1 yp e-YL/a (y) L/a (y) dy 22/a+l r(+./) t+
0 n m r(n+l) 6

Hence the right hand side of (3.8) gives,
r(/a+n+1) tm-n"r(l) m.’ (-4)

r (trtn+1 42n-r(u,1) n;

as required.

Next we shall establish a generating function for the biorthogonal set

P2m,/a (x, t)W2n,/a(x, t).

LI 6. For x, y, s and t > 0 and [z2t[ < s,

n=O n.’r(/a+n+l) P2n,/a(x,t)W2n /a(y,s)/= xy ,y:s+z2t).
4z2t

PROOF. Note that the series converges for Iz2t < s, using the asymptotic

estimates of the functions P2n,/a and W2n,/a therefore,

2n
z (x t (y,s)

n=O n.’ (r(+n+l) P2n,/a )W2n,/a
1

:Z (-1)n y t) f0(2/a)/a+2n+l -su2 J

n=O 2mn’.r(/a+n+l) P2n’/a(x’ e /a(yu)du,

due to (3.5),
1

2y u/a+l -su I
e J (yu)du 2 ’n’:(+l) P2n,/a(x’t)/a n=O

1 u -u2(s+z2t)
J/a(xuz)J (yu)du2+l z-/a(xy)- ue

1
y2+x2z2

(xy) z-/a e4( I [l,p.511.
+z2t " s+--2t)
fxy ]k
ts+z2t H/a(xz’y:s+z2t)’

due to the definition in (2.7).

Now two results on finite sums involving the functions P2n,/a and W2n,/a.
LE 7. For t > O, /a > O, and a complex z,

n
Z (-l)m fn+/a] m

r
k nLnf zr2

*’:’ tn-m
z P2n,/a(r,t) (1-4tz) tl-4ztJm-O

n
PF. By (2.5), z (-I fn+.]

2n,m=O m tn-mj
z r, t

(-l)m
zm U(s r’t)sk+ds

m=O m in-m]

n m

0 m=O m n-m
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U(s,r:t) sk LY(zs2)ds
0 n

21 -r

-[ r e s/+I I sr L (zs2)ds

k( n L"[ zr2 [I, p.43],r l-4tz)
n "’’t,-zJ

as required.

A similar result can also be proved involving W2n,.
LEMMA 8. For t > 0, > 0 and a complex z,

n k n++I nLZ (-1)m [n+"]zm t (t+4z) t(t/4z)m:O
’&’; tn-mj W2m,a(r’ t) 241(+i)

4. SERIES REPHESENTATION

In this section we shall establish a series representation of the heat transform

F(r,t) in terms of Laguerre polynomials and confluent hypergeometric functions.

As mentioned earlier, for a suitable f, its heat transform F is given by

rkF(r,t) U(s,r:t)skf(s)ds, t > 0,
0

where F(r,O) f(r) emd rkF(r,t) is a solution of the generalized heat equation

THEAOREM: If f(x) Z a has a growth I, u > 0, then
n=O n

rkF(r,t)
;0U(s,ir:-t)(s/i)kf(is)ds, - < t < 0

0U(s,r:t)skf(s)ds, 0 < t < o

Iwhere k /a u + ][

PIKX)F. If 0 < t < 6, we have

rkF(s,t) f U(s,r:t)sk Z a s
n dso n=O n

a "| U(s,r’t)sk+n ds
n=O n JO

Z a Pn,ta(r,t),n:O n

due to (2.5). The interchange of summation and integration is valid since

; ; t(s+r)2 k++n+l/2[U(s,r:t)sk+n[ds < e s ds < .
0 0

Also, if-6 < t < 0,

U(s, ir:_t)(s/i)kf(s)ds ; U(s,ir:_t)(s/i)k __Z an(is)nds
0 0 nO

a in-k f U(s,ir:-t)sk+nds
n-O n

n-kZ a , P (ir,-t) Z a P (r,t),
n=0 n n, n=O n n,

due to (3.3). Hence the result

Furthermore, for 0 < ltl < 8,
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Or

rkF(r,t) a P (r,t).
n=O n n,

rkF(r’t) a2n P2n (r,t) + a2n+l P2n+l,(r,t).
n=O n=O

Now making use of the definitions given in (2.5) and (2.6), we obtain

r(.+n+) n+ r
t

n=O n n=O

giving us a representation involving Laguerre polynomial and confluent hypergeometric

function.
1If we set 0 i.e. g u and k’= O, throughout, most of the results derived

here, reduce to known results given in [4] and [5]. Further, if we set u O, i.e.

n I, the results coincide with those derived in [7].
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