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ABSTRACT. We show that convergence spaces with continuous maps and metric spaces with

contractions, can be viewed as entities of the same kind. Both can be characterized by

a "limit function" % which with each filter associates a map % from the underlying

set to {ne extended positive real line. Continuous maps and contractions can both be

(htacterized as limit function preserving maps.

lhe properties common to both the convergence and metric case serve as a basis for

tne definition of the category, CAP. We show that CAP is a quasitopos and that, apart

from the categories CONV, of convergence spaces, and MET, of metric spaces, it also

contains the category AP of approach spaces as nicely embedded subcategorles.

KEY WORDS AND PHRASES. Limit, distance, convergence space, metric space, approac
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I. INTRODUCTION.

In [17] the categories TOP of topological spaces and continuous maps and pq-MET

of extended pseudo-quasi-metric spaces and non-expansive maps were embedded in a common

supercategory. The idea behind this embedding being that topological spaces and metric

spaces can be viewed as objects of the same type, in the sense that they both can be

described by a "distance between points and sets". Starting with a pq-MET space (X,d)

this distance is the usual one given by 6(x,A) := inf d(x,a). Starting with a topolo-
aeA

gical space (X,) a distance can be defined by 6(x,A) := 0 if x A and 6(x,A) := if

x A. A notion of distance has been axiomatized in [17] in such a way as to general-

ize both the metric and topological cases and resulted in the definition of the catego-

ry AP of approach spaces and contractions.

There are several advantages to this.

In the first place that of unification, e.g. the notions of compactness (in TOP)

and of total boundedness (in pq-MET) which turn out to be special cases of a measure
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of compactness in AP [18] and which in turn makes a concept introduced by C. KURATOWSKI

in [16] a canonical categorical notion.

A similar situation presents itself for the notions of connectedness (in TOP) and

Cantor’s "kettenzussamenhang" (in MET) [2], [19].

In the second place there are several classes of important topological spaces, e.g.

spaces of measures with the weak topology and spaces of random variables with the topo-

logy of convergence in measure which can more naturally be equipped with AP-structures

such that the topological structures are their TOP-coreflections [17].

In order to study these concepts and spaces it however soon became clear that we

would need a theory of convergence in AP. We develop such a concept of convergence by

means of assigning "limit functions" to filters, and moreover we show that AP can be

completely characterized by four axioms about limit functions; two fundamental axioms

-one on limit functions of principal ultrafilters and another on limit functions of

comparable filters- a third axiom of a pretopological nature on limit functions of in-

tersections of filters and a fourth one on limit functions of (Kowalsky-) diagonal fil-

ters [15].

Using this convergence-description of AP we obtain a very elegant characterization

ef initial structures in AP. AP is a topological construct in the sense of [i], [I0],

[ii]. However from a categorical point of view some desirable properties are missing.

For topologists and analysts, cartesian closedness is one such property [7], [9], [20],

[21].

The existence of nice function space objects is indeed an important advantage in homo-

topy, topological algebra, and infinite dimensional differential calculus. The topo-

logical construct becomes extremely nice to work in when apart from being cartesian

closed it also is hereditary, i.e. a quasitopos [5], [22], [23]. AP is neither carte-

sian closed nor hereditary. The situation is similar to the classical ones. Neither

TOP nor pq-MET" is a quasitopos. By weakening the axioms "bigger" categories with nicer

properties result. For example CONV is a quasltopos containing TOP, and pqs-MET is a

quasitopos containing pq-MET By dropping the diagonal axiom and weakening the pre-

topological axiom on limit functions we introduce the supercategory CAP of convergence

approach spaces. CAP is a quasitopos and moreover it contains both quasitopoi CONM and

pqs-MET as nicely embedded subcategorles. From this embedding it then follows that

convergence spaces and extended pseudo-quasl-semi metric spaces can be viewed as enti-

ties of the same type, both being characterized by means of limit functions of filters.

Moreover also AP is nicely embedded in this supercategory.

2. PRELIMINARIES.

If X is a set then the set of all filters on X shall be denoted F(X).

If e F(X), then the set of all ultrafilters finer than shall be denoted U().

If {X} then we write shortly U(X).

For any collection of subsets of X we denote stackX := {B c XI A e

A B}. If consists of a single element A we put shortly stackxA and if moreover A

consists of a single point a then we put stackxa. If no confusion can occur, we drop

the subscript and simply write stack a.s.o..

If (Sj)jmj is a family of sets, then elements of their product S. shall
jeJ J

sometimes be denoted in a functional notation, e.g. s where for all j e J s(j) S..
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JR+ stands for [0,] and all supreme and infima are taken in]R+. The following result

shall be useful.

PROPOSITIO 2.1. If F(X) and o e N q/ then there exists a finite set

U c U() such that U o(q) e . eU()
U

PROOF. Suppose not, in that case the family

u {x\=(%)l /- u()}

has the finite intersection property and thus is contained in some Q0 U(). Then

however X\o(0) 0 which is a contradiction.

An extended pseudo-quasi-metric space (shortly --pq-metric space) is a pair (X,d)

where

d XxX]R+
fulfils (i) x X d(x,x) 0 and (ii) x,y,z X d(x,y) <- d(x,z) + d(z,y).

The map d is called an extended 1)seu.do-quasi-me..tric (shortly -pq-metric). If d is

moreover symmetric, everywhere "quasi-" ("q-") is dropped.

Given two -pq-metric spaces (X,d) and (X’,d’) a function f X X’ is called

non-expansive if d’ o (ff) <. d.

The category with objects -pq-metrlc spaces and morphisms non-expanslve maps is

denoted pq-MET. See also [13], [14].

An approach space is a pair (X,6) where

X 2X
fulfils

(DI) A 2x, x A 6(x,A) 0

(D2) x X 6(x,)
(D3) A,B 2x, x X 6(x,AUB) 6(x,A) A 6(x,B)

(D4) A 2X, x e X, e +
(x,A) -< (x,A()) +

where A() :-- {y Xl6(y,A) .<
The map 6 is called a distance.

Given A 2
x

we denote

6A X --> ]R+
x -> 6(x,A).

Given two approach spaces (X,6) and (X’ ,6’) a function f X X’ is called a contrac-

tion if for all x X and A 2X

6’(f(x),f(A)) .< 6(x,A)

or equivalently, if for all A c 2x

6f(A) o f <. 6.
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3. CHARACTERIZATION OF AP VIA A CONVERGENCE THEORY.

In this section we shall give alternative characterizations of both approach

spaces and contractions.

Let X e ISETI. We recall the Kowalsky diagonal operator (D [15] defined as fol-

lows. For any index set J, any collection of filters (j)jeJ on X, and filter 3 on

J

(D (( j)jj,) := V n
F jF

In the case the collection of filters is a selection on X in the sense that we have a

map

5 ,x-->

x--> (x)

then we put shortly(D (,) for (D((S(y))yeX, )"

In the sequel we require the following results.

reader.

Easy proofs are left to the

PROPOSITION 3. I.

tlen the following properties hold

1 (D ((j)jej,) U 0 j.
Fe jF

2 If (l)le is a family of filters on J and 0 i then(D((;)jjj
leL

N d)((j)jej, i)"
leL

3 d(J)JeJ’) (q/j). n U(j) JJ’
JeJ jeJ

4 If each j, j e J is ultra and is ultra then 0((j)jj,) is ultra.

THEOREM 3.1. If (X,6) e IAPI then the map

Let (j)jj be a collection of filters on X and a filter on J,

,)

fulfils

(CALl)

CAL2

(PRAL)

-XF(X)-->m+
sup sup 6uqtu( 2

For any x e X (stack x)(x) 0.

9 9 => () .< ().
For any family (j)jej of filters on X

( n 3- sup (2j).
jJ J jeJ

(AL) For any e F(X) and any selection of filters ((Y))yeX
A(0"J(,)) <_ A() + sup ((y))(y).

yeX

Moreover, for any x e X and A c X

onX

PROOF.

6(x,A) inf A()(x).
qLEU stack A)

(CALl) follows from (DI) whereas (CAL2) follows from the fact that

implies U() c U().
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To prove (PRAL), let (j)jeJ c F(X). One inequality follows from (CAL2), to show the

other one observe that for all I U( j) and U q there exists j J and

U(j) such that U . Consequently we have

sup

jJ J

sup sup

sup (:j).

sup 6u

To prove (AL) let us first suppose that U(X) and that for all y X

(y) U(X) too. Now put e := s.. X((y))(y). Then for any D (D(,), by Pro-

position 3.1.1 there exists F Y" such that for all y F D (y), and conse-

quently

Thus D()

6(y,D) & X((y))(y) <. .
and it follows from (D4) that

6D() + e

sup 6F + e

() + .
By the arbitrariness of D 0)(,) and Proposition 3.1.4 it follows herefrom that

sup 6DD) (S ,
(:) + e.

Second, let us now suppose and all (y), y X are arbitrary filters on X, let

again e := yeSU ((y))(y) and for each ( yX U($(y)) let 6 := yexSUp X(6(y))(y).

Then by straightforward verification we have

sup .
By the foregoing result we know that for any 6 U((y)) and

()(,)) (%) +

Further, by Proposition 3.1.2 and 3 we also have

t U()

(3.2)

D(S,) n n )(,)
4% I-I UCCy)) U()

Combining (3.1), (3.2), (3.3) and upong applying (PRAL) it follows that

xC(S,)) x() + .
To prove the final claim of the theorem, first from the fact that for any

(3.3)
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%Ce U(stack A) we have A e % one inequality is clear.

and applying complete distributivity we obtain

Second, by definition of

inf (q) sup inf 6
eU stack A) 8e N q LteU(stack A) 8 (%t)

qleU(stack A)

By Proposition 2.1, for each 8 e N we can find U
8

c U(stack A) finite
eU(stack A)

such that A c t3 8(). Consequently by (D3), we obtain
’lUe

inf l(%) <= sup 6
qieU(stack A) e N ’L tJ 8(q/))

LeU(stack A) q/eU
8

which proves the remaining inequality.

THEOREM 3.2. If X ISET[ and

-XF(X)-->R+

is a map fulfilling (CALl), (CAL2), (PRAL) and (AL) then the map

2xX -> R+
(x,A) --> inf

LeU stack A)

is a distance on X.

Moreover, for any e F(X)

()(x)

sup sup 5U"eu(3 ue’u.

PROOF. (DI) follows from (CALl), (D2) follows from the fact that the infimum over an

empty set is infinite, and (D3) follows from the fact that for any A,B c X

U(stack ADB) U(stack A) D U(stack B). Before tackling (D4), we prove the final

claim of the theorem. Let the map l’ be defined as

-X’ F(X) -->R+
> sup sup 6U.LeU() Ue

Now. let % e U(X). Then first we have

’() sup 6UUe%t
sup inf
Ue /. eU(stack U)

(t). (3.4)

Second, by complete distributivity and (PRAL) it follows that

l’(i) sup inf l()
Ueq/. %qeU(stack U)

inf A( e(U)).
8 U(stack U)
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Now for any 8 e N U(stack U) and any U % we have U e 8(U) and thus we have
U-qL

n 8(U) c %[ and it follows from (CAL2) that

(t) ( n e(u)).

By the arbitrariness off St ollows in combination with (3.5) that

Together with (3.4) this shows that and coincide on ultrafilters.

By definition of ’ and the fact that fulfils (PL) it then follows that ’ . In

order to prove now (D4) let A c X, + and choose any e U(A(e)). Now suppose that

for some y e A() and for all e U(stack A)

< (%t)(y)

x,(/)(y) sup (y.U).
ue %

This implies that for all e U(stack A) there exists Ut e such that < 6(y,U%).
n

By Proposition 2.1 we can then find /l’’"’n e U(stack A) such that A c U ULi
and then it follows from (D3) that i=l

n
< inf 6(y,U
i=l

n
(y, u u%i)

.< (y,A)

which is in contradiction to the choice of y,

(y) e U(stack A) such that

Thus for all y A() we can find

(S(y))(y) s .
For y A(e) put (y) :ffi stack y and then put

, :m sup A((y))(y).
y-X

Now consider the diagonal filter(&,W) then A e (y) and thus too
yea()

A e(D(,/). From Proposition 3.1.4 it then also follows that d)(,/) e U(stackA)

and from the definition of and (AL) it then follows further that for any x e X

(x,A) (e(S,#))(x)
s ()(x) + ’
()(x) + .

From the arbitrariness of e U(stack A(e)) and the definition of 6 it then finally

follows that
6(x,A) 6(x,A(e)) + e.

The combined results of Theorems 3.1 and 3,2 give yet another way to describe the ob-
jects of the category AP.

In what follows objects of AP shall then often also be denoted (X,A) where then
is a map on F(X) fulfilling (CALl), (CAL2), (PRAL) and (AL). We shall characterize
the morphisms of AP using this new description of objects.
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THEOREM 3.3. If (X,l), (X’,%’) e IApI and f X X’ is a function then the following

are equivalent

f is a contraction

2 3 e F(X) %’(stack f()) o f & X()

3 U(X) %’(stack f(2[)) o f -< ().

PROOF. => 2 from Theorem 3.1 we obtain for any F(X)

stack f()) o f

sup sup 6o f
eU(stack f()) We

sup sup (U) o f
--U(

sup sup 6U%c-u(

(:).

2 => 3 clear.

3. => from Theorem 3.2 we obtain for any A c X

6’,A o f inf %’(%N) o f
e U(stack f(A))

inf ’(stack f(L)) o f
eU stack A)

inf
stack

4. THE QUASITOPOS CAP

DEFINITION 4.1. Given X ISET a map

-XF(X) -->+
is called a convergence-approaG,h li.it if it fulfils (CALl), (CAL2) and the following

weakening of (PRAL)

(CAL3) For all F(X) ( g) () V (). The pair (X,%) is called a

convergence-approa.ch space.

DEFINITION 4.2. Given convergence-approach spaces (X,%) and (X’,%’) a function

f X X’ is called a contraction if it fulfils

(c) For all e F(X) i’(stack f()) o f =< ().
In the sequel, a convergence-approach limit and a convergence-approach space will be
denoted shortly a CAP-limit and a CAP-space respectively.

We recall that a category of structured sets which is fibre-small and has the pro-
perty that all constant maps between objects are morphisms is called a construct [i],
[i13.
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If we denote CA__P the category with objects all CAP-spaces and morphisms all con-

tractions, then we obtain the following result, the verification of which is quite tri-

vial.

PROPOSITION 4.1. CAP is a construct.

A construct is called topological [Ii] if it is finally (or equivalently initially)

complete.

THEOREM 4.1. CAP is a topological construct.

PROOF. In order to show that CAP is initially complete consider the source

f.
(x > (xj,.j))jeJ

where all items have their obvious meaning.

Let be defined by

-X

sup ..
jeJ

(stack fj([)) o f..j

To show that is a CAP-limit on X is quite simple.

(CAL3) follows from the observation that for any j e J and any , e F(X), we have

stack f.j(0) stack fj() 0 fj().
To show that is initial, let (X’,A’) e ICAPI and let g X’ X be a function such

that for all j e J f. o g is a contraction. Then for any e F(X’) we have

(CALl) and (CAL2) are trivial and

stack g()) o g

sup A(stack f (stack g())) o fJ JjeJ

sup j(stack fjog()) o (fjog)
jeJ

.< ,( ).

o g

Consequently g too is a contraction and we are done.

Before proceeding we now need some further notational conventions and definitions.

If X,Y e ICAPI then HOMcAp(X,Y) stands for the set of all morphisms i.e. contrac-

tions from X to Y. If no confusion can occur concerning the category under study we

often omit the subscript and simply write HOM(X,Y).

Given e F(HOM(X,Y)) and e F(X) we define

v() .’= {(F)I V, F h)

where for all e and F

,(F) := {g(Y)Ig *, Y F}.

Clearly, stack () e F(Y).
Next for any f e HOM(X,Y) if AX and Ay are the CAP-llmlts on X and Y respectively, we
defin,.

.,’’,f) := {= e]R+l e F(X) Ay(Stack ()) of<=() V a}.
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Quite obviously, L(,f) is a subinterval of + and L(,f). Consequently the map

-HOM(X,Y)I F(HOM(X,Y)) --> m+
> inf L(,.)

is well-defined.

PROPOSITION 4.2. is a CAP-limit on HOM(X,Y).

PROOF. We leave the details to the reader. (CALl) follows from the fact that for any

f e HOM(X,Y) and any F(X) stack((stack f)) stack f(). (CAL2) and (CAL3)
follow from the facts that for any f HOM(X,Y) and any ,# F(HOM(X,Y)) respectively,

if @ then L(,f) c L(@,f) and if and # are arbitrary then L(0,f)
L(,f) 0 L(,f).

If is a topological construct, then is called cartesian closed if for all

objects A,B G I, the set HOMG (A,B) can be endowed with a G -structure such that the

evaluation map

ev A HOM (A,B) B

defined by ev(a,f) := f(a) is co-universal with respect to the endofunctor A For

more information on cartesian closedness, we refer to [7], [9], [20], [21].

THEOREM 4.2. CAP is cartesian closed.

PROOF. The assertion we have to prove breaks up in two parts

(I) For any two objects (X,Ix) and (Y,ly) in CAP and as defined in Proposition 4.2,

the evaluation

ev (X,%x) (HOM(X,Y),%) --> (X,ly)
is a contraction.

(2) For any three objects (X,lx) (Y,ly) and (Z,IZ) in CAP and a contraction

f (XxZ,kxkZ) --> (Y,ly)
the transpose

f (Z,kZ) -->(HOM(X,Y),k)

defined by f (z)(x) := f(x,z) is a contraction.

In order to verify (I) let ( g F(XHOM(X,Y)) and put := Prl(’) and := Pr2(’)
where

X HOM(X,Y) ’!-- X

"m HOM(X,Y)
are the canonical projections. Pr2

Now fix (x,f) e X HOM(X,Y) then from the definition of and the construction of ini-

tial structures in CAP, it follows that

(X)(()Cx,f) X()(x) V ()f)

inf{kx()(x) V el - L(,f)}. (4.1)

From the definition of L(,f) it follows that for any L(,f)

ly(stack ())(f(x)) < kX()(x) V .. (4.2)
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From (4.1), (4.2) and the fact that ev( ) () it follows that

ly stack ev((g) f (x)

<- y(stack ev(: ))(f(x))

%y(stack ())(f(x))

.< lxC)(x) V l()(f)

(RXR)(’)(x, f).

This proves (i).

In order to verify (2) notice that for any F(Z), F(X), z Z and x X,

since f HOM(XZ,Y), we have

f*Ry(stack ()(9))(f (z)(x))

Ry(Stack f(: ))(f(x,z))

_< x()(x) v hE(G)(z).
*(Consequently IZ()(z) L(f g),f*(z)) which implies that

(f*(G))(f’(z)) _-< Z
The arbitrariness of and z shows that f is indeed aain a contraction. This ends

the proof of the theorem.

A topological construct is called hereditary provided final epi-sinks are heredit-

ary, or equivalently as was shown in [ii], if partial morphisms are representable.

ff is a construct and A,B [[ then a partial morphism from A to B is a morphism

f HOM (C,B) where C is a subobject of A.

If G has subobjects then partial morphisms are representable if every object B

can be embedded via the addition of a single point =B into an object B@ I such

that for every partial morphism f C B from A to B the map

f# B#A-->

a --> f(a) if a C

if aCB

is a morphism in We shall use this characterization to prove our next result.

THEOREM 4.3. CAP is hereditary.

PROOF. Let (X,Xx),(Y,X) ICAPI and let Z X. The subobject determined by Z we shall

denote (Z,z) where then for any F(Z)

kZ() x(stackx ).

Let f (Z,iz) (Y,k) be a partial morphism from (X,AX) to (Y,k). Let Y@ := Y D {y}
where y Y and define

-YF(Y) --> JR+
as follows. If F(Y#)\{stacky y} then
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and

%#.()(y) := { (Iy
0

)(y) if y Y

A#(stackY# y) 0.

if y (R)y

It is rather dreary but straightforward to verify that (Y#,l#) ICAPI and that (Y,)
is embedded in (Y,) by inclusion, so we omit this. Now we define

f# (x,x) -->

by f#(x) f(x) if x Z and f#(x) y if x X\Z.

To show that f# is a contraction, let e F(X) and x X. If has a trace on Z

then it is clear that stack ,# f#() has a trace on Y equal to stacky f(IZ). If then

x Z it follows that f#(x)Y= f(x) Y and by definition of # and the fact that

f HOM(Z,Y) we then obtain

l#(stacky# f#( ))(f#(x))

l(stacky f(IZ))(f(x))
z(W[z)(X)
x(stackx( [z))(x)

x()(x).

If x X\Z the same inequality results at once from the definition of and from

f#(x) y. If does not have a trace on Z then again the same inequality holds for

any x X by definition of and the fact that stack.# f#() stack y@ (R)y. By Theo-

rem [II] this proves the theorem.

Since by definition a quasitopos is a hereditary cartesian closed topological con-

struct [i0] our main result now is an immediate consequence of the foregoing theorems.

THEOREM 4.4. CAP is a quasitopos, m

5. THE HEREDITARY TOPOLOGICAL CONSTRUCT PRAP

DEFINITION 5.1. Given X ISET a map
-XF(X) -->/

is called a pre-approach limit (or PRAP-limit for short), if it fulfils (CALl), (CAL2)

and (PRAL). The pair (X,l) is then called a pre-approah space (or PRAP-spa.ce for

short).

Clearly each pre-approach space is a convergence-approach space. The full subcate-

gory of CAP with objects all pre-approach spaces shall be denoted PRAP. From Proposi-

tion 4.1 we at once obtain the next result.

PROPOSITION 5.1. PRAP is a construct.

In Theorems 3.1 and 3.2, we proved that giving a distance on a set X is equivalent

to giving an approach limit on X. A simple inspection of the proofs of these two theo-

rems reveals that (DI), (D2) and (D3) are equivalent to (CALl), (CAL2) and (PRAL). Con-

sequently, if we call a map

6 X 2x-->+
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fulfilling (DI), (D2) and (D3) a pre-distance, then without further proof we can state

the following two results.

THEOREM 5.1. If X e ISETI and 6 is a pre-distance on X, then the map

-XF(X) -->R+
--> sup sup U

is a pre-approach limit on X.

Moreover, for any x X and A c X

6(x,A) inf X()(x).
ill eU stack A)

THEOREM 5.2. If (X,X) e [PRAP[ then the map

2xX -> +
(x,A) m> inf

qleU(stack A)

is a pre-distance on X.

Moreover, for any F(X)

x(U)(x)

() sup sup 6U.t -u( u-

As was the case for approach spaces the structure on a pre-approach space shall be de-

termined either by a pre-approach limit or by a pre-distance, whichever is more conve-

nient.

THEOREM 5.3. PRAP is a bireflective subcategory of CAP.

PROOF. Since PRAP contains all indiscrete CAP-objects, it will suffice to show that

PRAP is initially closed in CAP. Let (Xj,j)jej be a collection of PRAP-spaces and con-

sider the source

fo
(X ] > (Xj ’"3 jeJ"

Let be the initial CAP-limit on X given by Theorem 4.1. To prove that fulfils

(PRAL), let (k)keK be a collection of filters on X then

k sup lj(stack fj( k)) o f
jeJ keK J

sup j( stack fj(k)) o fj
jeJ keK

sup sup j(stack fj(k)) o fj
jeJ keK

sup
keK

and we are done.

REMARK. It is easily verified that the PRAP-reflection of a CAP-space (X,%) is given

by
idX(X,E) > (X,lp)
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where the pre-distance associated with kp is given by

6(x,A) := inf k(q)(x).
eU(stack A)

COROLLARY 5.1. PRAP is a topological construct.

We shall later give a simple reason why PRAP is not cartesian closed, it is how-

ever hereditary as we shall now prove.

THEOREM 5.4. PRAP is an hereditary topological construct.

PROOF. The proof goes exactly the same as that of Theorem 4.3., the only difference

being that now one starts with (X,x),(y,) IPRAPI and one has to show that

(Y,) IPRAPI We leave this to the reader.

6. EMBEDDING CONV IN CAP

A convergence space [6], [15] is a pair (X,q) where X ISETI and q F(X) X

fulfils

(CI) for all x e X (stack x,x) q.

(2) For all F(X) and x X (,x) e q, => (,x) q.

(C3) For all 3, F(X) and x e X (,x) q and (,x) e q => (,x) q.

Given convergence spaces (X,q), (X’,q’) a function f X X’ is called continuous

if for all (,x) q we have (stack f(),f(x)) e q’.

The class with objects all convergence spaces and morphisms all continuous maps,

is a quasitopos [I0], denoted CON.

The proof of the following result is quite straightforward and so we omit it.

THEOREM 6.1. CON-V is embedded as a full subcategory in CAP by the functor

CON---> CAP

(X,q) -> (X k
q

where for all F(X), and x X

[ 0 if (i,x) q

q()(x) :=
otherwise.

We shall now show that this embedding actually is extremely nice, but first we

mention the following useful characterization of CONV in CAP, similar to that of TOP in

AP [17].

PROPOSITION 6.1. A space (X,%) ICAPI is a convergence space, if and only if for all

F(X) (3)(X) c (0,-}.

As the formulation of this proposition suggests we shall not differentiate between

the notion of a convergence space and of a CAP-space fulfilling the condition of Propo-
sition 6.1. This is after all entirely justified by Theorem 6.1.

THEOREM 6.2. CONV is a bireflective subcategory of CAP.

PROOF. Given (X,X) ICAPI define

-X>,.,,,. F(X) R+
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by ,()(x) 0 if %()(x) < and %,()(x) if %()(x) . (X,k,) clearly is

aconvergencespace and the bireflection of (X,%) is given by

idX(x,) > (x,,).

THEOREM 6.3. CONY is a bicoreflective subcategory of CAP.

PROOF. Given (X,X)e [CAP[ define

* -X
h F(X) --> ]+

by X ()(x) 0 if X()(x) 0 and X )(x) if ()(x) > 0. Again it is clear,
that (X,X) is a convergence space and that the bicoreflection of (X,A) is given by

, idx(x,) -> (x,).

7. EMBEDDING PRETOP IN PRAP

A pre-topoloKical space [4], [6] is a convergence space (X,q) where instead of

(C3) q fulfils the stronger condition

(PR) For any collection (j,x)jeJ c q we have n ,x) q.
jem

The full subcategory of CONV with objects all pre-topological spaces is denoted PRETOP.

It is quite easy to see that precisely the same results hold for PRETOP w.r.t. PRAP, as

those proven in Section 6 for CONV w.r.t. CAP. We therefore list them without further

explanation.

THEOREM 7.1. PRETOP is embedded as a full subcategory in PRAP by the functor

PRETOP --> PRAP

(X,q) --> (x,x)
q

where for all e F(X) and x e X

f

q

0 if (,x) e q

otherwise.

PROPOSITION 7.1. A space (X,i) e IPRAPI is a pre-topological space, if and only if for

all e (X) %([)(X) c {0,=}, or equivalently, if 6 is the pre-distance associated

with , if and only if 6(Xx2X) c {0,}.

THEOREM 7.2. PRETOP is a bireflective subcategory of PRAP, the bireflection of any

PRAP-space beinB the same as its CONV-bireflection.

THEOREM 7.3. PRETOP is a bicoreflective subcategory of PRAP, the bicoreflection of any

PRAP-space being the same as its CONV-bicoreflection.

Again, we shall not differentiate between pre-topological spaces and PRAP-spaces

fulfilling the condition of Proposition 7.1.
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8. EMBEDDING AP IN PRAP

From Section 3 it is quite clear that AP is embedded as a full subcategory of

PRAP.

THEOREM 8.1. AP is a bireflective subcategory of CAP.

PROOF. Since AP contains all indiscrete CAP-objects, it will suffice to show that AP

is initially closed in CAP. Let (Xj,j)jeJ be a family of AP-spaces and consider the

source

f.
(X -] > (Xj,%_j)) jeJ"

Let i be the initial CAP-limit on X. From Theorem 5.3 we already know that I fulfils

(PRAL). To show that it also fulfils (AL), let F(X), let ((Y))yeX be a selec-

tion of filters on X an put e := sup %((y))(y). Now, for all J define the fol-
yeX

lowing selection of filters on X.

( Yefil (z)

02.j (-):=
stack

stack f.((y)) if z f.(X)

if z fj(X)
We leave to the reader the straightforward verification that for all j J

(D(O’j,stack f.()) stack f.((D(S 2)).

Next for all j J, put e..’= sup %j((Pj(z))(z). Now if z fj(X) then
] zeX.

)j(j(z))(z) )j(stack z)(z) 0 <. e

whereas, if z e f.(X) then

;j((Pj(z))(z) ;<j( f]

yefi (z)

stack f.(.(y)))(z)

sup %j(stack f(5(Y)))(fj(Y))
yefil(z)

_-< sup sup %j(stack f.((y)))(fj(y))
yeX jeJ

E.

By the arbitrariness of e j, this implies that

(6.2)

From (6.1) and (6.2) we then obtain

()(,3t)) sup ),j(stack f ()(,1))) o f.
jeJ

J

<= sup )j(f)[4j,stack f.())) o f.
jeJ

J
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.< sup Xj(stack f (5)) o f + sup
jem J J jeJ

_-< (2) +

and we are done.

COROLLARY 8.1. AP is a bireflective subcategory of PRAP.

9. EMBEDDING pqs-MET IN PRAP

The most general kind of map measuring a distance between points of a set X is an

extended pseudo quasi-semimetric (shortly -pqs-metric). An -pqs-metric

d XX]R+

need only fulfil d(x,x) 0 for all x e X. The pair (X,d) then is called an -pqs-

metric space. Given-pqs-metric spaces (X,d) and (X’,d’) a function f X X’ is

called non-expansive if d’ o (ff) & d.

Let pqs-MET stand for the category with objects all -pqs-metric spaces and morphisms

all non-expansive maps.

THEOREM 9.1. pqs-MET is embedded as a full subcategory in PRAP by the functor

pqs-MET --> CAP

(X,d) --> (X, kd
where for all F(X) and x X

Ad()(x) := inf sup d(x,y).
Fe yeF

PROOF. That Ad fulfils (CALl) and (CAL2) is clear. That it also fulfils (PRAL) is

seen as follows. Let (j)jej c F(X) then for any x e X we have

ld 0 )(x) inf sup d(x,y)
jeJ J Fe 0 9. yeF

jej 3

inf sup
e n . y e(j)
jeJ J jeJ

d(x,y)

inf sup sup d(x, y)
8 n jej y8(j)
jj J

sup ha(gj)(x).
jej

If (X,d), (X’,d’) Ipqs-METl and f (X,d) (X’,d’) is non-expansive it is easily
verified that f (X,d) (X’,d,) is a contraction. The converse is equally simple
upon noticing that from the definition of d’ for any x,y e X d(x,y)= d(stack y)(x).

REMARK. By Theorems 5.1 and 5.2, the pre-approach space (X,d) is identical to (X,6d)
where 6

d is the pre-distance derived from d’ i.e. for all x X and A X

6d(X,A) inf inf sup d(x,y). (9.1)
QeU(stack A) U t yeU
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This rather complicated expression for 6
d

can however be much simplified using the fol-

lowing lemma.

LEMMA 9.1. Given (X,d) e Ipqs-METl, q e U(X) and x X we have

sup inf d(x,y) inf sup d(x,y).
UL yU Uk yU

PROOF. The inequality & follows from the fact that for any UI,U2 q7_

inf d(x,y) & sup d(x,y). To show the other one, suppose
YeU YeU2

inf sup d(x,y) > = 0.
UZt yeU

Then for all U e/ there exists YU U d(x,yU) > . Clearly

W := {YuIU q -and inf d(x,y) >= a which proves our claim.
yew

THEOREM 9.2. Given (X,d) e Ipqs-METl the pre-distance 6
d
associated with kd

is given

by

6d(X,A) inf d(x,a) x X, A c X.
aeA

PROOF. Immediate from (9. i) and Lemma 9. i.

THEOREM 9.3. pqs-MET is a bicoreflective subcategory of PRAP.

PROOF. Let (X,6) e PRAPI and define the map

d
6

X X--> +
(x,y) -- 6(x,{y}).

It is clear that (X,d6) Ipqs-METl. The remainder of the proof now is exactly the

same as in Theorem 6.7 [17], where it was shown that pq-MET is a bicoreflective subca-

tegory of AP, and so we omit this. m

Analogous to the characterization of pq-MET in AP [17], we have the next result,

the verification of which we leave to the reader.

PROPOSITION 9.1. A space (X,6) IPRAP is an (R)-pqs-metric space, if and only if for

any x X and A c X

6(x,A) inf 6(x,{a}).
aeA

THEOREM 9.4. pqs-MET is a hereditary topological construct.

PROOF. This is an immediate consequence of Corollary 5.1, Theorem 9.3 and of Theorem 6

[11].

REMARK. Initial structures in pqs-MET are obtained as follows. Let

fo
(X ] > (Xj,dj))jej

be a source, then the initial -pqs-metric on X is given by
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d ’ Jjsup dj o (fjfj).
We leave the verification to the

THEOREM 9.5. pqs-MET is cartesian closed,

PROOF. For (X,dx), (Y,dy) - Ipqs-METl let HOM(X,Y) stand for all non-expansive maps

from (X,dX) to (Y,dy). For any f, HOM(X,Y) put

C(f,)

and define

d HOM(XY) HOM(X,Y)----> ]R+
(f,) > inf C(f,g)

Clearly d is a well-defined (R)-pqs-metric on HOM(X,Y). In order to show that

ev (M,dX) (HOM(X,Y),d)---> (Y,dy)
(x,f) > f(x)

is non-expansive, let x,y X and f, HOM(X,Y) then

dy(f(x),g(y)) inf{dx(x,y) V ale C(f,g)}

dx(x,y) V d(f,g)

dx d((x,y),(f,g)).

Next, if (Z,dZ) e Ipqs-MgTl, f HOM(XxZ,Y) then consider the map
,

f {Z,dZ) ---> (HOM(X,Y),d)

z --> f (z)

where f (z) is defined by f (Z)(X) " f(XZ).

In order to show f is non-expanslve, let z,z’ Z then since f e HOM(XZ,Y) we obtain

for all x,x’ X

dy o (f*(z)f*(z ’))(x,x’)

d(f(x,z),f(x’ ,z ))

=< dx(X,X’) v dz(Z,Z’).

Consequently dz(z,z’) e C(f*(z),f*(zt)) and d(f*(z),f*(z’)) -<_ dz(z,z’).
The combined results of Theorem 9.4 and 9.5 now give us the following theorem.

THEOREM 9.6. pqs-MET is a quasitopos, m

As a final result in this section, we shall now show that pq-MET (which is a bi-

coreflective subcategory of AP [17]) is a blreflective subcategory of pqs-MET.
THEOREM 9.7. pq-MET is a bireflective subcategory of pqs-MET

PROOF. Given (X,d)e Ipqs-MET’l define

1 x x-gt+
as follows. For any x,y X, put
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n XnSn(X,y) :-- {(xj)j= 0 IXo x, Xn y}

and then define

n

d(xj_ xj)l(xj) n Sn(X y)}.(x,y) inf inf{jZ=l i’ j=OnlN
0

Verification of the facts that satisfies the triangle inequality and that

idx(X,d) > (X,)

is the pq-MET-reflection of (X,d), we leave to the reader.

i0. COUNTEREXAMPLES

COUNTEREXAMPLE I. We construct a finitely generated topological space, a CONV-quotient

of which is not in PRETOP. Let X := U ]n,n+l[. Consider the partition of X by split-
n3

ting each interval ]n,n+l[ in three subintervals ]n,n [, In ,n+l-], ]n+l-,n+l[ and

let " be the associated partition topology on X. Since X is then a co-product of in-

discrete spaces it is finitely generated [9]. Let Y := ]0,i[ and consider the map

f X---> Y

x -> x-Ix].

The CON-V-quotient q on Y is characterized by stating that (,y) q, if and only if

-l(y) such thatthere exist Xl,...,x e f
n

n
n f(]’(xi)___) c

i=l

where for any x X J’{x) is the "-neighborhoodfilter of x. Consequently for all

n<= 3

(f((n )),) q

but n f(e4/(n)),) # q
ng3

and thus q is not pre-topological.

COUNTEREXAMPLE 2. We construct a finite m-pq-metric space, the -pq-metric of which

attains only the values 0 and and a pqs-MET-quotient of which is not in pq-MET.
Let X := {u,v,x,y} and let d be the -pq-metric (i.e. d is symmetric) defined by

d(u,y) d(v,x) 0

d(u,v) d(v,y) d(y,x) d(x,u) .
Let Y := {u,v,z} and define the map

f XY

by f(u) u, f(v) v, f(x) f(y) z.

If e denotes the pqs-METe-quotient on Y then the e-distance between two points in Y

is equal to the d-distance between their fibres. Consequently

e(v,z) d({v},{x,y}) d(v,x) A d(v,y) 0

e(u,z) d({u},{x,y}) d(u,x) A d(u,y) 0
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but since

e(u,v) d({u},{v}) d(u,v)

e does not fulfil the triangle inequality and thus is not an -pq-metric.

From [17] and the foregoing sections we obtain the following diagram where r (resp.

c) means the smaller category is bireflective [resp. blcoreflective) in the larger one.

CAPCON

r
r

r PRAPPRETOP
c c----pqs-MET

r
r r

TOP ----cr---’---" AP --_cpq_MET

We shall now use the results of both counterexamples to show that this diagram is com-

plete in the sense that no other reflectivlty or coreflectivity arises except those in-

dicated and those obtained by transitivity.

In [17] it was shown that TOP N pq-MET consists precisely of all finitely gene-

rated spaces and that a distance attains at most the value 0 and , if and only if it is

associated with a topology. Consequently in both counterexamples the original space X

is at the same time in TOP, in pq-MET and a fortiorl also in AP.

The first counterexample then shows that Y, the CONV-quotient (= CAP-quotlent) of X,

is not in PRETOP and since CONV N PRAP PRETOP (see Proposition 6.1 and 7.1) also not

in PRAP. This gives us first the known results that neither TOP nor PRETOP are core-

flective in CONV, second that neither AP nor PRAP are coreflective in CAP and third that

neither pq-MET nor pqs-MET are coreflective in CAP.

The second counterexample gives us , the pqs-MET-quotient (= PRAP-quotient) of X,

which is not in pq-MET=. However since the pre-distance on Y again attains only the

values 0 and , Y is in PRETOP. On the other hand, since pqs-MET AP pq-MET (see

Theorem 6.20 [17] and Proposition 9.1) Y is not in AP and thus also not in TOP. This

then gives us first again the known result that TOP is not coreflective in PRETOP, se-

cond that AP is not coreflective in PRAP and third that pq-MET is not coreflective in

pqs-MET. Further in [17] it was seen that pq-MET is not reflective in AP from which

it follows that pqs-MET is neither reflective in PRAP nor in CAP, and that pq-MET" is

not reflective in CAP. This completes our argumentation.

The authors would llke to thank J. ADAMEK and L.D. NEL for bringing the problem of

cartesian closedness in the setting of AP to their attention.
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