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ABSTRACT. The main intent in this paper is to find triples of Rational

Pythagorean Triangles (abbr. RPT) having equal areas. A new method of

solving a2 b2 c2+ab+ is to set a=y-1, b=y+l, y6N- {O,11 and get
b2 c2Pell’s equation c2 3y2 1 To solve a2 ab + we set

a=1/2(Y+l), b=y-1, y!2, y(N and get a corresponding Pell’s equa-

tion. The infinite number of solutions in Pell’s equation gives rise

b2 c2.to an infinity of solutions to a2 + ab + From this fact the

following theorems are proved.

Theorem 1 Let c2 a2 b2+ab+ a+b> c> b> a> O, then the three RPT-s

formed by (c,a), (c,b), (a+b,c) have the same area S=abc (b+a) and

there are infinitely many such triples of RPT.

Theorem 2 Let c2=a2-ab+b2 b> c> a> 0 then the three RPT-s formed

by (b,c), (c,a), (c,b-a) have the same area S abc (b-a) and there are

infinitely many such triples of RPT.

KEY WORDS AND PHRASES. Rational Pythagorean Triangles (abbr. RPT),
Perimeter of the RPT, Pell’ s (Euler’s) equation, Fibonacci sequence.
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1. DEFINITIONS AND PREVIOUS RESULTS. In one of his papers Bernstein

[1] returned to the Grecian classical mathematics, and investigated

primitive rational Pythagorean Triangles concerning mainly k-tuples of

them having equal perimeters 2P.

In this paper we deal with rational integral right triangles

having equal areas and give the following
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DEFINITION A rational triangle with sides a,b,c which are represented

by a triple (a,b,c) of natural numbers will be called a Rational

Pythagorean Triangle, if and only if

there exists (u,v),(u,v) N2- {(0,0)I, l
u > v, such that { (1.1)
a u2-v2, b 2uv, c u2+v2,
a,b,c cN t0} 1,2,...

We abbreviate Rational Pythagorean Triangles by RPT and we write

RPT(u,v) for RPT formed by (u,v). We also write S(u,v) for the area

and P(u,v) for half perimeter of the RPT(u,v)

D=RPT(u,v):S(u,v) 1/2ab= uv(u2 v2 (1.2)

P(u,v) 1/2(a+b+c) u(u+v)

The main intent in this paper is to find triplets of RPT-s having

equal areas.

The first who asked this question was the great Diophantus [3]
and Dickson [2] enlarged the topic.

Let D be a triangle with integral sides and C 120 one of its

angles. Then if c is the side opposite C and a,b the two adjacent
^ b2 ^sides of C, we have, by c2 a2+ -2ab cos C

a2 + ab + b
2 c2

a+b> c>b> a; a,b,c N {0}
and if C 60 we have

l

a2-ab+b2= c’2 (1.4)
b> c>a> O; a,b,c N [OI. ]

The totality of solutions to a2ab + b2 c2 is given in parameter form

by Hasse [6]. ..T.e new idea in this payer rests in the fact that (1.3)
and (1.4) are connecte.d with. the a.reas of th9 trigpgles. In order to
find a formula to derive explicitly the infinity of RPT-s of equal

area, since we cannot use Hasse’s [6] parametric form, we will give a

new method to prove that the equations a2 ab + b2= c2 have infinitely

many solutions and state some of them explicitly.

The new method will bring us to the solution of a Pell’s equation.

The infinite number of solutions of Pell’s equation [43 will give rise

to an infinity of solutions to a2+ab+b2=c2.
2. PELL’.S...(EULER’S EQUATION: Un2 3Vn

2 I; n 0,I, In the

sequel we shall permanently have to make use of Pell’s equation

2 2un 3vn i, n=0,1, (2.1)
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This could be solved by continued fraction with V + 1 [2-], but

we use a simpler method since a solution of (2.1) is easily found.

Neglecting (u0,vO) (1,0) we have

(u,v) (,), (.)

hence using [5]
un+vnV (2 + /)n, n:O,l,... (2.3)

From (2.3) we deduce

iO n 2n-2i3iUn (2i) n=O,1,...

(2.4)

n 2n-i-2i3iVn (2i+l) n=l,2,...

From (2.4) we obtain

m

U2m lO= (i) 22m-2i3i; m=l,2,...

m-i
2m 2Pm-l-2i3iV2m (2i+i) m=l,2,... (2.5)

(Uo,Vo) (,o)

m

U2m+l:lO: (22I) 22m+i-2ii; m:O,l,...

m (2.6)
2m+l 22m-2i3iV2m+l (2i+I) m 0,i,...

In U2m all summands are even but the last which is 3m; in V2m all

summands are even, hence

U2m 2F+I; (2.7)
V2m 2G; F,G N J

In U2m+l all summands are even; in V2m+l all summands are even but the

last which is 3m; hence

U2m+l 2S; (2.7a)
V2m+l 2T+l; S,T N.

We have the initial values

(u0,v0) (i,0); (Ul,Vl)= (2,1); (Ua,V2)= (7,4)

(u3,v3) (26,15); (u4,v4)= (97,56); (Us,V5) (362,209 ’(2.8)

(u6,v6) (1351,780); (UT,V7) (5092,2911).



772 M. BICA

3. A SOLUTION OF (1.3) a2 .b
2 2+ab + -c Here we shall give infinitely

many solutions of (1.3) in explicit form, though they won’t constitute

all solutions of (1.3). Let
a2 b2 c2 ]+ab+ a+b>c>b>a>O,

a,b,c N- |0}. f (3.1)

We set

a=y-l; b:y+l; yEN- |0. (3.2)
Substituting the values of a,b from (3.2) in (3.1) we obtain

(y-l)2+ (y2_l) + (y+l)2 c2

or c2- 3y2 1.

Now we set c Un, y vn, n=l,2,.., and we get Un2- 3Vn
2 1 or

2 2un 3vn 1 which is (2.1).
The infinite number of solutions un,vn in Pell’s equation (2. i), give

rise to an infinity of solutions to a2+ ab + b
2 c2.

THEOREM I. Let c2 a2 b2+ab+ a+b> c> b> a> 0 then the three RPT-s

fo.rmed by (c,a), (c,b), (a+b,c) have the same area S abc(b+a) and

there are infinitely many such triples of RPT-s.
Proof. To get the example given by Diophantus [3, p. 172] as a

particular case of our formulas we consider (a,b,c)= 1. Since we

prefer (a,b,c) l, though this is not absolutely necessary, we have to
set vn even in (2.1), so that a,b are both odd. If vn V2m we obtain

a=V2m-l; b=V2m+l; c=U2m; m--l,2,... (3.3)

Using (1.2) and a2+ab+b2 c2 it is easy to show that

S(c,a) S(c,b) S(a+b,c) abc(b+a).
D1 RPT(c,a) RPT(U2m,V2m-l);
D2 RPT(c,b) RPT(U2m,V2m+l);
D3 RPT(a+b,c) RPT(2V2m,U2m),

and following S abc(b+a) the common area is

2S 2 U2mV2m(V l)2m

That there are infinitely many such triples of RPT-s follow from the

infinity of solutions of (2.1).
Choosing m l, we have from (2.8)

(u2,v2) (7,4); u2 7, v2 4

c 7; a 3; b 5
S 3-5-7-8 840

and this is exactly the example given by Diophantus.

If we choose m 2, we have
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(u4,v4) (99,56); u4 9?; v4 56;

c 97; a 55; b 57.
S 55-57-97"112 34,058,640.

For RPT(97,55) using (1.2) we have

S(97,55) 97"55(972-552
55-57-97.112 S in (3.6).

4. SOLUTION 0F (i.). 9.2- ab + 2= c2., In this chapter we state more

triples of triangles RPT having the same area. We shall first prove

Let
b2 c2a2 ab+ a,b,c N-0}; then (4.1)

b> c> a> O; (a,b,c) !

In (4.1) we set arbitrarily b > a; then we have

b2 c2 a(b-a) > 0; b > c;
2 a2 J (4 2)c b(b-a) > O; c > a;

Thus b> c> a> O, as stated in (4.1). We shall now prove

H.EOREM 2. Let c2=a2-ab+b2, b> c> a> O. Then the three RPT-s
formed by (b,c), (c,a), (c,b-a) have the same area S, viz.

S abe(b-a) (4.3)
and there are infinitely many such triples RPT.

Poof. If we set in (1.4) a -->-a, we obtain from equation (1.3), the

equation (4.1). But this is only an algebraic formality, since the

RPT ormed by (c,-a) makes sense, though from S abc(a+b) we obtain

(4.4) by substituting -a for a. We also have

2 2c (a-b) +ab, c> a-b, b-a. (4.4)
Now

I b2_ 2 1/2D1 RPT(b,c); S(b,c) 2be( c xy

I 2bca(b-a)= abe(b-a);
1 2D2 RPT(c,a); S(c,a) 2ca(c2-a xy

1 2cab(b-a) abe(b-a);
1 c2 2D3 RPT(c,D-a); S(c,b-a) Re(b-a)[ (b-a) ] =1/2 xy

c(b-a)ab abe(b-a)
S S(D,c) S(c,a) S(c,b-a) abe(b-a).

We still have to prove that (4.1) has infinitely many solutions.

We shall give two methods to find these solutions, though these may
not be all ininitely many solutions of (4.1). This was done by Hasse

[6] with algebraic number theory which we shall avoid here, giving

simple methods to solve (4.1) in explicit form.
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In (4.1) we set
b=a +v, v=b-a> 0;

we obtain, setting a b-v,

(b-v) (b-v)+ b= c

b2 bv+v2 c2 0

v2 bv- (c2-b2) 0. (4.6)
From (4.6) we obtain

v 1/2 (b _+ & + ’(c’- ’b) 1,

v 1/2 (b _+ &o"-’’ ). (.r)

We have, since setting 4c2- 3b2=x2 contradicts our condition (a,b,c)= 1

4c2 3b2 i. (4.8)
Thus we have arrived at Pell’s equation, setting

2c Un, b vn. (4.9)

.Thus un is even, and we must take un U2m+l
b V2m+l; c 1/2 U2m+l;
a b-v=b-1/2 (b+l).

and from (2.7a) we obtain

(4.o)

Since we obtain two values for a, we may have obtained six RPT-s with
1

equal area. We shall investigate this later. We first take v = (b+l)

ba { (b-l) 1/21_(V2m+l-l) I 4. IiV2m+l; c 2 U2m+l;
b-a 1/2 (V2m+l +I)" J

Hence, from (4.3), or forming

DI=RPT(b,c), D2=RPT(c,a), D3=RPT(c,b-a)
]. 1S=1/2(V2m+l l)-V2m+l U2m+l (V2m+l+l)

s {- Um/Vm/<v/ (4.12)

We take, for an example m i,

(u3,v3) (26,15)

U2m+l 26; V2m+l 15

S -i .26.15(152-1) 10,920.

The reader should note that since

2S + 1 v22m+l-1 O(mod 8).V2m/l
Hence, in (4.12) S is an integer. We now take v 1/2 (b-l) and obtain

from (4. I0)
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ib V2m+l; c U2m+l;
a b-v 1/2(b+l) 1/2(V2m+l +i)

ib-a (V2m+l I),

(4.)

and from D4=RPT(b,c), D5=RPT(c,a), D6=RPT(c,b-a). Previously, we

had for v 1/2 (b+l),
a (V2m-1) b V2m+l, c U2m+l
b-a 1/2(V2m+l).

Comparing (4.11) with (4.13) we see that

D2 D6

D3 D5
DI D4

and thus get the same triple of RTS-s in both cases.

b25 SECOND SOLUTION OF c2 a2 ab + We give a second method of

’finding infinitely many solutions of (4.1). We set here

a 1/2 (y+l); b=y-1; y>2; y E N. (5.1)

Substituting these values in (4.1), we obtain

[1/2 (y+l)]2-1/2 (y2_l) + (y-l)2 c2

2y +2y+l-2y2+2+4y2-8y+4 4c2

y2_6y+T 4c2

}(y-1)2 + 4 4c2

4c2 3(y-I)2 4. (5.2)

Since from (2.7) y-i has to be even we can cancel (5.2) by 4 and we

obtain

y-I 2V2m, y 2V2m+l; (5.3)

and with c U2m we obtain

2 3v 1U2m
a 1/2 (2V2m + 2),

a V2m+l; b 2V2m, c U2m (5.4)

S abc(b-a) (V2m + 1)2V2m U2m(V2m- i)

S 2U2mV2m(Vl- I). (5.5)

Comparing (5.5) with (4.12) we may think about the different expressions

for area S; though one is expressed by U2m+l, V2m+l, the other by U2m,
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V2m, it is so because we are dealing here with different areas, de-

pending on the values of a,b,c, which are different in each case. For

an example for (5.5) we choose m 2,

(u4,v4) (97,56),

S 2.97" 56-(562-1) 34,058,640.
If we set

a=2m-l, b=2V2m, c=un, b-a=V2m+l
2 (5.6)3vU2m

b2 2 2then a2 ab + c S= 2U2mV2m(V2m-1). But we obtain nothing new

since RPT(c,a), RPT(c,b-a) are interchanged with RPT(c,b-a), RPT(c,a).
The author is asking whether two successive Fibonacci numbers

could be solutions a,b of a2 b2 2
+ ab + c The Fibonacci sequence, see

[8] with Fl=F2=1, Fn+2=Fn+Fn+l, n=l,2,.., goes i, l, 2, 3, 5, 8,

13, 21, 34, 55, 89, 144, Now (F4,F5) (3,5) is a solution of

the Diophantine example 3+3 "5 + 52 72 and (Fs,F6) (5,8) is a

solution of

82 7252 5" 8+

Here S abc(b-a) 5-8-7-3 840 whether there are more pairs of

b2 2
adjacent Fibonacci numbers serving as solutions of a2 ab + c

could not be decided generally here.

6. PERIMETERS AND AREAS. As known, P, half the perimeter of a RPT

is a divisor of its area S, since

P u(u+v), S u-v(u2-v2) (6.1)
s" P v(u-v)

where (u,v) forms the RPT. The question arises whether there are other

connections between these two elements. Here we could only prove

THEOREM 3. Let a2 ab+b2 c2 b> c> a>O, a,b,c N- {0}. Then the

sum of the three perimeters formed by a,b,c, viz. RPT(b,c), RPT(c,a),
RPT(c,b-a) is the sum of two squares.

Proof. We have

b2 2D1 RPT(b c): 2PI Xl+Yl +zl b2 c2 +2bc+ +c

2P1 2b (b+c)
2_ a2 + 2ca + c2 + a2D2 RPT(c,a) 2P2 x2 + Y2 + z2 c

2c(c+a)
D3 RPT(c,b-a) 2P3 x3 + Y3 + z3 c2 (b-a)2 + 2c(b-a) + (b-a) 2 + c2

=2c2 + 2c(b-a) 2c(c+b-a).

P1 +P2 +P3 b(b+c) +c(c+a) +c(c+b)-ac

2c2+2bc+b2 (b+c)2+c2
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7. ENTIRELY NEW RPT-s. In a very little known paper Hillyer [ 7] has

given a most surprising infinity of triples of Rational Pythagorean
triangles in an explicit form, having equal areas. These are formed by

D1 RPT(u,v) RPT(a2 + ab + b2 b2 2-a

D2 RPT(u,v) =RPT(a2+ab+b2 2ab+a2

D3 RPT(u,v) =RPT(2ab+b2, a2+ab+b2) (7.1)

b > a > 0; b,a Q+

As we see, Hillyer was not concerned about RPT-s; his Pythagorean tri-

angles had just to have rational sides. We shall operate with RPT-s
only and set

a,b N- {0; b>a>0. (.2)
We first investigate, whether the condition

u > v > 0 (7.3)
is fulfilled for Dl, D2, D3. We have

Dl: u-v a2 + ab + b2 (b2 a2)
2b2 + ab > 0; u > v > 0.

D2: u-v a2 + ab + b2 (2ab + a2)
b2 ab b(b-a) > 0,

since b > a hence u > v > 0

D3: u-v 2ab + b2 (a2 b2+ab+

ab a2 a(b-a) > 0,
since b-a > 0, u > v > 0.

We shall now find the areas of D1, D2, D3, and have

D1 :S1 (a2+ab+b2) (b2-a2)[ (a2+ab+b2)2-(b2-a2) 2]
(a2+ab+b2) (b2-a2) (a2+ab+b2+b2_a2). (a2+ab+b2-b2+a2)
(a2+ab+b2) (b2-a2) (ab+2b2) (ab+2a2)
S1 ab(a2+ab+b2) (b2-a2) (a+2b) (b+2a). (7.4)

D2:S2 (a2+ab+b2) (2ab+a2)[ (a2+ab+b2)2-(2ab+a2)2]
(a2+ab+b2)a(a+2b) (a2+ab+b2+2ab+a2) (a2+ab+b2-2ab-a2)
(a2+ab+b2)a(a+2b) (2a2+3ab+b2). (b2-ab).

Now

hence

2a2+3ab+b2 (2a+b)(a+b),

S2 ab(a2 + ab + b2) (b2-a2) (a+2b) (b+2a)

D3:S3 (2ab+b2) (am+ab+b2)[ (2ab+bR)m-(aR+ab+b2)2]
b(2a+b) (a2+ab+b2) (2b2+3ab+b2) (ab-a2).

Now

2b2+3ab+b2 (2b-a)(b+a).
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Hence

S3
ab(aR+ab+b2)(bR-aR)(a+2b)(b+2a). (7.6)

Thus S1 S2 S3
,

ab(a2 + ab + DR) (bR-aR)(a+Rb) (b+Ra). (7.7)

We now return to the equation of Diophantus from (i. 3)

a2 + ab + b2 c2 ]
a+b > c > b > a > 0 (1.3)
a,b,c N- 0}.

We found that the three triples RPT(c,b), RPT(c,a), RPT(a+b,c) have

equal areas, viz.

S abc(b+a).
If in (7.7) we demand that a2 b2 c2+ ab + solvable in natural number

a+b > c > b > a > 0 we obtain

abcR(b2-aR)(a+Rb)(b+Ra), (7.8)
and from (7.8), and S abc(a+b),

S c(b-a)(a+2b)(b+Ra). (7.9)
Now the quotient S is a natural number, and many authors have asked

and solved the question of the ratio of the areas of two RPT-s.

8. THE MAIN RESULT. We now form three RPT-s, having equal areas.

They are entirely new and unknown. We investigate

b2 b2 a2D1 RPT(u v) RPT(a2 ab + );
D2 RPT(u,v) RPT(a2-ab+b2, 2ab-b2);
D3 RPT(u,v) RPT(2ab-a2, a2-ab+b2)
2a ) b ) a > 0; b,a +

We first check for DI, D2, D3,
u > v > O, u-v > O.

The reader note the condition

2a>b.

Later when we shall operate with RPT-s and the equation

a2 ab + b2= c2

(8.1)

we shall see that solutions of this equation are possible with 2a > b.

We have, (u,v) g Q+)

b2 (b2 a2DI: u-v a2 ab +

2a2 ab a(2a-b) > 0

v b2 a2 > O.
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D2: u-v a2-ab+b2- (2ab-b2)
a2- 3ab + 2b2

(2b-a)(b-a) > 0

v 2ab-b2=b(2a-b) > 0.

D3: u-v 2ab-a2- (a2-ab/b2) =3ab-2a2-b2

(2a-b)(b-a) > O.

u-- 2ab-a2=a(2b-a) > 0

v a2-ab+b2 (a-b)2+ab>O.
We shall now find the areas formed by DI, D2, D3, and have

ml:S1 (a2-ab+bR)(b2-a2)[ (a2-ab+b2)2_(b2_a2)
(a2-ab+b2) (b2-a2) (a2-ab+b2-b2+a2). (a2-ab+b2+b2-a2)
(am-ab+b2) (bR-a2 (2aR-ab) 2bR-ab
(a2-ab+b2) (bR-aR)a (2a-b) (2b-a).

S1 ab(aR-ab+b2) (b2-a2) (2a-b) (2b-a).

DR: S2 (a2-ab+b2) (2ab-b2)[ (a2-ab-bR)-(Rab-a) 2]
(a2-ab+b2)b(2a-b) (a2-ab+b2-2ab+b2) (ab+a2)
(a2-ab+bR)b(2a-b) (aR-3ab+RbR)a(b+a)
(aR-ab+bR)b (2a-b) (2b-a) (b-a)a (b+a)
ab (a2-ab+b2 (b2-a2 2a-b 2b-a ).

S2 ab(aR-ab+b2)(b2-aR)(Ra-b)(2b-a).

D3: S3 (2ab-a2)(am-ab+b2)[ (2ab-a2)R-(aR-ab+b2) 2]
(2ab-a2) (a2-ab+b2) (2ab-a2-a2+ab-b2) (2ab-a2+a2-ab+b2)
a 2b-a (aR-ab+b2) (3ab-2am-b2)- (ab+b2

ab(aR-ab+bR)(Rb-a)(Ra-b)(b-a) (a+b)
ab (a2-ab+b2) (b2-a2) (2a-b) (2b-a).

S3 ab (aR-ab+b2) (b2-a2) (2a-b) (2b-a).

Thus we have obtained the wanted result

S1 S2 S3 ’.
We now return to the equation

a2-ab+b2 c2, b>a>0
b>c>a>O; b,c,a g N- |0}

and recall from (5.4) that there is a solution with

b
a=+l; 2a> b

as we needed. With equation (4.1), takes the form

(8.2)

(8.3)

(8.5)
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’ 2 b2 a2abc )(2a-b)(2b-a)
2a> b> c> a; a,b,c N-10.

b2 c2Now with a2 ab + and (4.3), viz.

S abc(b-a)
and obtain thus the quotient

I’ s c (b+a) (2a-b) (2b-a).

As an example we shall take

a2-ab+b2=c’2

(a,b,c) (8,15,13).
Here 2a=16> 15 b; we obtain

’ 8.15.169.161.1.22,

’ 24-3-5.7-11-132.23 71,831,760

S abc(b-a) 8-15"13"7

23-3-5.7.13 10,920.

S 2 ll 13 23 6 578

71,831,760 10,920 6,578

(8.6)
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