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ABSTRACT. A pair of polynomial sequences {S(x’k)} and {T(x;k)} where S(x;k) is
n m n

of degree n in x
k

and T(x;k) is of degree m in x, is constructed. It is shown
m

that this pair is biorthogonal with respect to the Szeg-Hermite weight function

Ixl2exp(-x2), ( >-I/2) over the interval (--,-) in the sense that

f Ixl 2 exp(-x2) S(x;k) T(x;k)dx 0 if m # n

0, tfm--n

where m,n 0,1,2 and k is an odd positive integer.

Generating functions, mixed recurrence relations for both these sets are

obtained. For k I, both the above sets get reduced to the orthogonal polynomials

introduced by professor Szeg.
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I. INTRODUCTION.

The biorthogonality conditions are useful in the computations involving the

penetration of gamma rays through matter as well as in determining the moments of a

hypergeometric distribution function. The notion of biorthogonality dates back to

Didon [I] and Deruyts [2]. The questions of constructing biorthogonal pairs of

polynomials corresponding to the weight functions of classical orthogonal polynomials
--Xwere taken up by Konhauser [3] for the Laguerre weight function x e by Toscano [4],

Chai [5], Carlitz [6] and Madhekar and Thakare [7] for the Jacobi weight function

(l-x) (l+x) 8 and by Thakare and Madhekar [4] for the Hermite weight function

exp(-x2). The SzegS-Hermite polynomials H(x) are orthogonal w.r.t, the Szeg-Hermiten
weight function Ixl2exp(-x2),( > -1/2) over the interval (-,) and these are found
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useful in connection with Gauss-Jacobi mechanical quadrature, see Szeg8 [8]. For

O, Szeg-Hermite polynomials are just the classical Hermite polynomials.

2. A BIORTHOGONAL SYSTEM.

We shall construct a pair of biorthogonal polynomials w.r.t, the Szego-Hermite

weight function Ixl2exp(-x2), > -1/2. Consider the following pair of polynomial

sequences.

S(x;k) 2nF((kn + k- ke)/2 + + e)
n

(-l)J [n/2]]j xnk-2kj/F ((kn+l+e)/2-kj+)" (2.1)

TV(x; k) (_i)[n/212n [n2] xn_2r/([n/2]_r)!
n r=O

(_l)S [n/2]-r

s=0
s

((2s+(k+l)e + 2v+l)/2k)[n/2 ], (2.2)

where the value of is 0 or according to even or odd nature of n. Throughout this

paper e always has this meaning; and [p] is the greatest integer less than or equal

to p.

It is fairly easy to verify after reverting the order of summation for even and odd

integers that

n
n x2kjSn(X;k (-l)n22n r(kn++k/2) Z (-I) j /r(kj++I/2)

j=0 J

(_l)n22n n! [F(kn+v+k/2)/F(kn++I/2)] Zv-I/2 (x2;k); (2.3)
n

n 2kj+k
n x(x’k) (-I)n 22n+l r(kn++l+k/2) E (-I) j

S2n+l
j=O

j r (kj++l+k/2)

(_l)n22n+In! x
k zV+k/2 (x2;k);

n
(2.4)

n 22r r

T2n (x;k) (-l)n22n E --r! Z (_l)S rs ((s++I/2)/k)n’
r=0 s=0

(-l)n22n n! YV-I/2(x2;k),
n

(2.5)

n r

T2n+Iv (x;k) (-l)n22n+l l (x2r+I/r’). I (_l)S rs ((s+v+l+k/2)/k)n’
r=0 s=O

(-l)n22n+l yV+k/2 2n! x (x ;k). (2.6)
n

Here Za(x;k)n and Yna(X;k) is a pair of Konhauser [3] biorthogonal polynomials w.r.t.

the Laguerre weight function xcaexp(-x) over (0, ,) and are given by

n xZca(x’k) r(kn + ca + I) n kj

n n’ Z (-I) j (2 7)
j--O

j r(kj + + I)
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n r r
x s r

((s++l)/kn)" see Carlitz [9]Ye(x;k) l . 7. (-i)
sn r=O s=O

(2.8)

where > -I, and k is a postive integer, and

a -x ya F(kn+e+l) 6(n,m) with 6(n,m) (2 9)I x e Z (x;k) (x;k) dx
0

n m n!

the Kronecker’s delta. Using [I0] one readily obtains the following biorthogonality

condition for the sets {S(x;k)} and {T(x;k)}:
n m

I Ixl 2u exp (-x2) S(x;k) TU(xk) dx
n m

2
2n [n/2]! r(+e+(kn+k-ke)/2) 6(n,m) (2.10)

An independent proof of (2.10) is also possible by using the identity of Carlitz [9,

p. 249] m m-r
(-J)

m
7. kj+c+m-rm_r 7. (-1 s m-rs (s+c+ )/k)m"

r=O s=O

One has to note, however, that k is involved in S(x;k) and T(x;k) must be an odd
n m

positive integer in view of the existence theorem for blorthogonallty due to

Konhauser [I0, p.255].

One readily obtains

+(k+l)/2 (x;k) and (2 II)r(kn+k++I/2) S (x;k) 2x
k F(kn++l+k/2) S2n2n+l

T (x;k) 2x
_+(k+l)/2 (x;k) (2.12)

Zn+l -I-2n

D SB (x’k) 4 nk xk-I F(kn+B+k/2) B+(k-l)/2 (x;k) (2.13)
2n F (kn+B+ / 2) 2n-

3. SOME PROPERTIES.

Using the relationship (2.3) to (2.6) it is fairly easy to obtain many results

for the Szeg-Hermite biorthogonal pair of polynomials from the known results for the

Konhauser biorthogonal sets. The results stated below could also be proved directly.

Recall the Calvez and Ge’nin [II] generating function in the form (see also

Srivastava 12

Z m+nn Ym+n (x;k) t
n R(l++mk)exp{x(l-R) Y(xR;k) (3.1)

n=0

where m is any integer 0 and R (l-t) -I/k. By handling even and odd cases

separately, from (2.5) and (2.6) respectively, one obtains

l T2m+nV (x;k)tn/[n/2],. (3.2)
n=O

V (xU;k)] where U=(l+4t2) -I/2k andVU(+mk+(l+k)/2) [u-k T m(XU;k) + t T2m+l
V exp{x2[l-(l+4t2)-I/k]}. The special case with m=O is worth noting. Using (3.2)

for even case and then applying (2.12) one obtains in a combined form the recurrence

relation for the second set
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[n12]
)m 2mT(x-k) : (-1 2

m0
nl2m (U-l)

m
Tn-2m(x;k)’ l# and ,>-I12.(3.3)

Taking O, and n even in (3.3) and using the blorthogonality condition (2.10) we

have the integral

I {x{ 21 exp (-x2) Sl2m (x;k) T2n(X;k) dx (3.4)

F(km+l+k/2) where with 0, T2n(X;k) is the(_i)
n

4
m+n

(-n)m(-I/k)n_m
second biorthogonal set suggested by the Hermite polynomials; see Thakare and

Madhekar [4]. The integral (3.4) says that T2n(X;k) are othogonal to Ixl21S12m(x;k)
w.r.t, the weight function exp(-x2) when n > m+I/k.

Consider the generating function first given by Genin and Calvez [13]; (see also

Karande and Thakare [14], Prabhakar [15]):

Z (c)nZ (x;k) tn/(l+a)kn (l-t)
-c F

k
txk/(l-t)kk (3.5)

n=O (k, l+a)

where Itl < and A(m,6) stands for the sequence of parameters 6/m, (6+l)/m

(6+m-l)/m, (m>l). Using (2.3) one obtains from (3.5), an expression involving

Sn(X;k)_ which after putting to use relation (2.11) gives a correspondingeven

relation for odd S2n+l (x;k) This resulting expression further with the help of the

relation

(x;k) t2n+I/n! (3 6)Z (C)ns2n+ (+k/2)
nk

n=0

t(k+2+ke)/(k+2B) Z (C)nSn+l(X;k)= t2t/n!(+l+k/2)nk where 8=t, d/dr
n=0

yields
(c)

n

n=O n! (+k/2)nk
S (x;k)t2n+l 2tx

k u-2k(l+c) (u-2k 8ckt2

2n+l k+2
-) (3.7)

+ 16 ckt3x3ku2k(c+2) +I; W

IFk (k,u+l+k/2); (k+2) (l++k/2)
k

IFk A(k,l++3kl2;

where W 4x2kt2/(l+4t2)kk
In fact, one obtains after combining even case with (3.7) the following generating

function for the first blorthogonal set {S(x;k)}:
n

(C)[n/2]
t
n (+k/2) u2kc Vc; W7Z S (x;k) (+I/2) IFk

n=0 In/2]! (+k/2)k[n/2] n (k,+i/2);

k+2u (k, 1++k12);

16 ckt
3

x
3k U2k(c+2) Vc+l;+ (k+3) (l++k/2)k iFk A(k,l++3k/2;

W
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We finally state the differential equation satisfied by the first set {S(x;k)}
in the form

[x2(xD+2v+l+e)]k {xl-2k (D-ek/x) Sn(X;k)} (3.9)

(2x2) k {x D S(x;k) nk S(x;k)} anda differential recurrence relation
n n

for the second set

k T (x;k) -2xD T(x;k) 2(l+ml+2-2x2) T(x;k) (3.10)
n+2 n n
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