NONPARAMETRIC MINIMAL SURFACES IN R³ WHOSE BOUNDARIES HAVE A JUMP DISCONTINUITY

KIRK E. LANCASTER

Department of Mathematics and Statistics Wichita State University Wichita, KS 67208

(Received January 21, 1987 and in revised form February 18, 1987)

ABSTRACT. Let Ω be a domain in \mathbb{R}^2 which is locally convex at each point of its boundary except possibly one, say (0,0), ϕ be continuous on $\partial\Omega / \{(0,0)\}$ with a jump discontinuity at (0,0) and f be the unique variational solution of the minimal surface equation with boundary values ϕ . Then the radial limits of f at (0,0) from all directions in Ω exist. If the radial limits all lie between the lower and upper limits of ϕ at (0,0), then the radial limits of f are weakly monotonic; if not, they are weakly increasing and then decreasing (or the reverse). Additionally, their behavior near the extreme directions is examined and a conjecture of the author's is proven.

KEYS WORDS AND PHRASES. Dirichlet problem, Variational Solution and Nonparametric Minimal surfaces. 1980 AMS SUBJECT CLASSIFICATION CODE. 35J65, 35J67.

1. INTRODUCTION.

How does the generalized solution of the Dirichlet problem for the minimal surface equation with boundary values ϕ behave when ϕ has a jump discontinuity (say at the origin)? Under certain mild conditions on the domain $\Omega \leq R^2$, we shall show that the radial limits at (0,0) of the solution, denoted Rf(θ), exist for all $\theta \in (\alpha,\beta)$, where $\Omega = \{(\mathbf{r},\theta) | \alpha < \theta < \beta, 0 < \mathbf{r} < \mathbf{r}(\theta) \}$. Further, on at most three intervals (i.e. $[\alpha,\alpha^{\prime}], [\theta_{\mathrm{L}}, \theta_{\mathrm{R}}], [\beta^{\prime},\beta]$) Rf(θ) is constant and elsewhere it is strictly monotonic.

If Rf(θ) lies between the lower and upper limits of ϕ at (0,0), then Rf is weakly monotonic on [α , β]. If not, then Rf is not monotonic on [α , β] but it is weakly monotonic on [α , α + π] and on [β - π , β]. Under some smoothness and nontangency assumptions, we shall show that $\alpha' = \alpha$ or $\alpha' = \alpha + \pi$ and $\beta' = \beta$ or $\beta' = \beta - \pi$. We shall also show that $\theta_R = \theta_L + \pi$ when θ_L and θ_R occur. Thus there is at most one interval on which Rf(θ) is constant.

2. PRELIMINARIES.

By Ω we will mean a bounded open subset of R^2 with the following properties: (a) Ω is connected and simply connected. (b) $\partial \beta$ is Lipschitz and N = $(0,0) \in \partial \Omega$. (c) Ω is locally convex at each point of its boundary except possibly N. (d) In polar coordinates (r,θ) about $N,\Omega = \{(r,\theta) \mid \alpha < \theta < \beta, 0 < r < r(\theta)\}$ with $-\pi < \alpha < 0 < \beta < \pi$. From (d) we see that near N, the x-axis divides $\partial\Omega$ into two components.

DEFINITION. Let Ω be as above. We will denote by C*($\partial \Omega$) those functions $\phi \in C^{0}(\partial \Omega/\{N\})$ such that

 $\phi(N+) = \lim \phi(P)$ as $P \in \partial \Omega \cap \{(x,y) | y > 0\}$ approaches N and

$$\phi(N-) = \lim \phi(P)$$
 as $P \in \partial \Omega \cap \{(x,y) | y < 0\}$ approaches N

each exist.

Notice $\phi \in C^*(\partial \Omega)$ implies ϕ has a jump discontinuity at N (possibly with jump 0).

DEFINITION. Let $\phi \in C^*(\partial \Omega)$. Define $f = f(\cdot, \phi)$ to be the function in BV(Ω) which minimizes

$$J(\mathbf{v}) = J(\mathbf{v},\phi) = \iint_{\Omega} \sqrt{1 + |D\mathbf{v}|^2} + \iint_{\partial\Omega} |\mathbf{v} - \phi|$$

for $v \in BV(\Omega)$.

Notice $f \in C^{2}(\Omega) \cap C^{0}(\overline{\Omega}/\{N\})$ and $f = \phi$ on $\partial \Omega/\{N\}$.

We set

$$S_{\Omega} = S_{\Omega}(\phi) = \{(x,y,f(x,y)) | (x,y) \in \Omega \}$$

and

$$\Gamma_{\Omega} = \Gamma_{\Omega}(\phi) = \{(x,y,\phi(x,y)) \mid N \neq (x,y) \in \partial\Omega\}.$$

Let S be the closure of S_0 , Γ be the closure of Γ_0 , Γ^+ be the closure of $\Gamma \cap \{(x,y) \mid y > 0\}$, and Γ^- be the closure of $\Gamma \cap \{(x,y) \mid y < 0\}$. Throughout this paper, we will make the following

ASSUMPTION. $f \notin C^{\mathbf{O}}(\overline{\Omega})$.

We will need to represent S parametrically. Let us set $E = \{(u,v) | u^2 + v^2 < 1\}$, B = $\{(u,v) \in E | v > 0\}$, $\partial^2 B = \{(u,v) \in \partial E | v > 0\}$, $\partial^2 B = \{(u,0) | -1 < u < 1\}$, B' = B $\cup \partial^2 B$, and B'' = B $\cup \partial^2 B$. Using the methods of [1] or [2], we can prove the following propositions.

PROPOSITION 1. There exists $X = (z,y,z) \in C^{\circ}(\overline{B}: \mathbb{R}^3) \cap C^2(B: \mathbb{R}^3)$ such that X maps B homeomorphically onto S_0 , X maps $\partial^{-}B$ strictly monotonically onto Γ_0 , X maps $\partial^{-}B$ into the z axis, $X(-1,0) = (0,0,\phi(N-))$, $X(1,0) = (0,0,\phi(N+))$, and

$$x_{u} \cdot x_{v} = 0$$
$$x_{u}^{2} = x_{v}^{2}$$
$$x_{uu} + x_{vv} = 0$$

on B. Also, X extends across ∂ B by reflection to a function in $C^2(E: R^3)$ and

$$X_{u}(u,0) = (0,0,z_{u}(u,0))$$
$$X_{v}(u,0) = (x_{v}(u,0),y_{v}(u,0),0)$$

for $-1 \le u \le 1$.

For each $\alpha < \theta < \beta$ and t > 0, define $\lambda(t,\theta) = (t\cos(\theta), t\sin(\theta)),$ $\omega(t,\theta) = \omega(t,\theta,\phi) = X^{-1}(\lambda(t,\theta), f(\lambda(t,\theta))),$ $\lim_{Rf(\theta) = t \to 0+ f(\lambda(t,\theta)) \text{ if this exists.}}$ Set $Rf(\alpha) = \phi(N-)$, $Rf(\beta) = \phi(N+)$, $u(\alpha) = -1$, and $u(\beta) = 1$. PROPOSITION 2. For all $\alpha < \theta < \beta$, there is a unique $u(\theta) \in [-1,1]$ such that $\omega(t,\theta) \rightarrow (u(\theta),0)$ as $t \rightarrow 0+$ and $Rf(\theta) = z(u(\theta), 0).$ Further, $u(\cdot) \in C^{0}([\alpha,\beta])$, $Rf \in C^{0}([\alpha,\beta])$, and $X_{u}(u(\theta),0) = |z_{u}(u(\theta),0)| \quad (\cos(\theta), \sin(\theta),0)$ for all $\theta \in (\alpha, \beta)$ with $|u(\theta)| < 1$. REMARK. If X has no branch points on $\{(u(\theta), 0) \mid \theta_1 < \theta < \theta_2\}$, then $u(\cdot)$ is strictly increasing on $[\theta_1, \theta_2]$. Also, $u(\cdot)$ is weakly increasing on $[\alpha, \beta]$. From the proof of Theorem 3.2 of [1], we have the following LEMMA 1. Suppose $\alpha \leq \theta_1 < \theta_2 \leq \beta$ and $\theta_2 - \theta_1 \leq \pi$. Then Rf is weakly monotonic on $[\theta_1, \theta_2]$. Further, X maps $\{(u, 0) \mid u(\theta_1) \leq u \leq u(\theta_2)\}$ strictly monotonically into the z-axis. 3. BOUNDARY BEHAVIOR. DEFINITION. We will say condition * holds (for $\phi \in C^*(\partial\Omega)$) if $Rf(\theta) \equiv Rf(\theta,\phi)$ lies between $\phi(N-)$ and $\phi(N+)$ whenever $\alpha < \theta < \beta$. REMARK. If $\beta - \alpha \leq \pi$, it follows from Lemma 1 or from standard barrier arguments that * holds for all $\phi \in C^*(\partial \Omega)$. THEOREM 1. Suppose * holds. Then X is strictly monotonic on ∂ 'B, Rf is weakly monotonic on $[\alpha,\beta]$, S has no branch points in E, Rf is constant on $[\alpha, \alpha']$ (i) and $[\beta',\beta]$, and Rf is strictly monotonic on $[\alpha',\beta']$, for some $\alpha',\beta' \in [\alpha,\beta]$ with α´ < β´. Suppose * does not hold. Then X has one branch point, (u(0), 0), in E, $z(\cdot, 0)$ is strictly increasing (decreasing) on [-1,u(0)] and strictly decreasing (increasing) on [u(0),1], Rf is constant on (ii) $[\alpha, \alpha']$, $[\theta_{I}, \theta_{P}]$, and $[\beta', \beta]$, Rf is strictly increasing (decreasing) on $[\alpha', \theta_{I}]$ and Rf is strictly decreasing (increasing) on $[\theta_{R},\beta^{'}]$, for some $\alpha^{'},\beta^{'},\theta_{L}$, $\theta_{\rm R} \in [\alpha,\beta]$ with $\alpha' < \theta_{\rm L}$ and $\theta_{\rm L} + \pi \le \theta_{\rm R} < \beta'$. PROOF. From Lemma 1, we see that * holds iff Rf is weakly monotonic on $[\alpha,\beta]$ and if * fails to hold, then Rf is weakly monotonic on $[\alpha, \alpha + \pi]$ and on $[\beta - \pi, \beta]$. From [3] we know that X is strictly monotonic on a subset of ∂B iff it is weakly monotonic there. Since $X(u(\theta), 0) = (0, 0, Rf(\theta))$, X has at most one branch point in

E, which can only occur at (u(0),0) ([4]). Using Proposition 2 and the subsequent remark, we see either that one of the conclusions of Theorem 1 holds or that X is monotonic on ∂ B and has a branch point at (u(0),0). We will eliminate this possibility.

In the case to be eliminated, Rf is weakly monotonic (say increasing) on $[\alpha,\beta]$, strictly increasing on $[\alpha',\theta_L]$, constant on $[\theta_L,\theta_R]$, and strictly increasing on $[\theta_R,\beta']$, for some $\alpha \leq \alpha' < \theta_L < \theta_L + \pi \leq \theta_R < \beta' \leq \beta$. We may rotate the x-y plane so that $\theta_R = 0$ and (by a conformal map of B into B fixing (-1,0) and (1,0)) we may assume that u(0) = 0. As in [5], there exist neighborhoods U and U' of 0 in E and a C^{-1} -diffeomorphism F: U' + U with DF(0) = e·id for some $0 \neq e \in \mathbb{R}$ such that

$$(z + ix)(w) = (F(w))^{m}$$

$$y(w) = Im(A(F(w))^{n}) + o(|w|^{n})$$

for all $w \in U'$, where $0 \neq A = a + ib$ and n > m > 1 are integers. Suppose we set $\omega = s + it = F(w)$ and $x = x \circ F^{-1}$, $y = y \circ F^{-1}$, $z = z \circ F^{-1}$. Then $(z + ix)(\omega) = \omega^{m}$ for $\omega \notin U$. Let γ be the image of the real axis under F. Then γ is tangent to the real axis at the origin and, since x(w) = 0 for w real, $x(\omega) = 0$ for $\omega \notin \gamma$. If $\omega = re^{i\delta}$, then $x(r,\delta) = r^{m}sin(m\delta)$ and the only curves on which x vanishes are $\delta = k\pi/m$ for all integers k. Thus γ must be the real axis in U. Since y(w) = 0 for w real, $y(\omega) = 0$ for ω real. This means that b = 0 and $y(\omega) = aIm(\omega^{n}) + o(|\omega|^{n})$. If σ is a curve in U from $(r,\delta) = (\varepsilon,0)$ to $(r,\delta) = (\varepsilon,\pi)$ (ε small) such that $(x(\sigma), y(\sigma))$ is star-shaped with respect to the origin, then the sign pattern of $x(\sigma)$ is +,- and $y(\sigma)$ is +,-,+. Thus m must be 2, n must be 3, $z(s,o) = s^{2}$, and so $Rf(\theta) = z(F(u(\theta)))$ cannot be monotonic on (α,β) . Q.E.D.

In [1], the case $\phi \in C^{O}(\partial \Omega)$ and $\beta - \alpha > \pi$ is considered and the conjecture that $\theta_{R}^{-} = \theta_{L}^{-} = \pi$ is mentioned. The following theorem proves that this is always true. THEOREM 2. In case (ii) of Theorem 1, $\theta_{R}^{-} = \theta_{L}^{-} = \pi$.

PROOF. If Q is an interior branch point of X, then there is a unique unit vector n(Q) such that as $P \in E$ approaches Q, the unit normal n(P) to X(E) at P approaches n(Q) ([6]). Since

 $X_{u}(u(\theta),0) = (0,0,z_{u}(u(\theta),0) \text{ and}$ $X_{u}(u(\theta),0) = |z_{u}(u(\theta),0)|(\cos(\theta), \sin(\theta),0),$

we see that $n(\theta) = n(u(\theta), 0) = \pm (\sin(\theta), -\cos(\theta), 0)$ when $\alpha' < \theta < \theta_L$ or $\theta_R < \theta < \beta'$. If we let $\theta + \theta_L^-$, we get $n(Q) = \pm (\sin(\theta_L), -\cos(\theta_L), 0)$ and if we let $\theta + \theta_R^+$, we get $n(Q) = \pm (\sin(\theta_R), -\cos(\theta_R), 0)$ where Q = (u(0), 0). Thus $\theta_R = \theta_L + \pi$. Q.E.D.

A question of interest is to determine the asymptotic behavior of Rf(θ) for $\theta > \theta_R$ near θ_R . A discussion of the asymptotic behavior of Rf(θ) for $\theta < \theta_L$ near θ_L is similar. We may assume that Rf is increasing on $[\theta_R, \beta^{-}]$.

As in the proof of Theorem 1, let us assume that $\theta_{\rm R} = 0$ and u(0) = 0; then ${\rm Rf}(\theta) = z({\rm F}(u(\theta)))$ and $z(s,0) = s^2$. Since $z(\omega) + ix(\omega) = \omega^2$, $\omega = (z + ix)^{1/2}$ and $y = a{\rm Im}((z + ix)^{3/2}) + o(|z| + ix|^{3/2})$. Thus $y_{\chi} = 3a \operatorname{Re}((z + ix)^{1/2})/2 + o(|z + ix|^{1/2}).$ When x = 0, we get

$$y_{x}(z) = 3/2 \text{ a } z^{1/2}/2 + o(|z|^{1/2}).$$

Next, if $0 = \theta_R < \theta < \beta'$, then $Rf(\theta)$ is equal to that value of z > o for which $y_y(z) = tan(\theta)$. For this value of z,

$$z + o(|z|) = (2 \tan(\theta)/3a^2)$$

and so asymptotically as $\theta \rightarrow 0+$,

$$Rf(\theta) = (2/3a)^2 \theta^2$$

We wish to examine the behavior of $Rf(\theta)$ near $\theta = \alpha$ and $\theta = \beta$.

THEOREM 3. Let $\phi \in C^*(\partial \Omega)$ and let $f \in BV(\Omega)$ minimize $J(\cdot, \phi)$ over $BV(\Omega)$. Suppose that $\Gamma^+(\Gamma^-)$ is a C^1 curve in a neighborhood of $(N, \phi(N+))((N, \phi(N-)))$ which meets the z-axis nontangentially. Suppose further that the unit normal to the graph of f extends continuously to the corner formed by $\Gamma^+(\Gamma^-)$ and the z-axis. Then $\beta' = \beta$ or $\beta' = \beta - \pi$ ($\alpha' = \alpha$ or $\alpha' = \alpha + \pi$).

PROOF. The proof is essentially the same as that of Theorem 2. We will prove $\beta' = \beta$ or $\beta' = \beta - \pi$. Let $\theta < \beta'$ approach β' ; then $n(\theta)$ approaches $n(\beta') = \pm (\sin(\beta'), -\cos(\beta'), 0)$. Since the normal to the corner is $\pm (\sin(\beta), -\cos(\beta), 0)$, we see that $\beta' = \beta$ or $\beta' = \beta - \pi$. Q.E.D.

REMARK. If $\Gamma^+(\Gamma^-)$ is a line segment in a neighborhood of $(N,\phi(N+))$ $(N,\phi(N-))$) which meets the z-axis nontangentially, then [7] (also [9]) implies that the hypotheses of Theorem 3 are satisfied.

Let us say that a "fan" exists at θ_0 when Rf(θ) is constant on a nontrivial interval containing θ_0 . Since $\beta - \alpha < 2\pi$, we get

COROLLARY. Suppose that the hypotheses of Theorem 3 are satisfied for Γ^+ and Γ^- . Then no more than one "fan" can occur.

4. EXAMPLES.

EXAMPLE 1. (the helicoid). Consider the functions f(x,y) over $\Omega = \{(r,\theta) | \alpha < \theta < \beta, 0 < r < 1\}$ with $-\pi < \alpha < \beta < \pi$ whose graph is given parametrically by

Y(s,t) = (t cos(s), t sin(s), s).

Then $\phi = f \in C^*(\partial \Omega)$, $Rf(\theta) = \theta$, and Γ^{\pm} meet the z-axis at right angles. Here we see that Rf is strictly increasing, $\alpha' = \alpha$, and $\beta' = \beta$.

EXAMPLE 2. (Scherk's surface). Consider

$$f(x,y) = \ln(\sin(y)) - \ln(\sin(x))$$

over $\Omega = \{(\mathbf{r}, \theta) \mid 0 < \mathbf{r} < 1, \alpha < \theta < \beta \}$, where $0 < \alpha < \beta < \pi/2$. Then $Rf(\theta) = \ln(tan(\theta))$ and Γ^{\pm} meet the z-axis at right angles. Notice Rf is strictly increasing on $[\alpha, \beta], \alpha' = \alpha$, and $\beta' = \beta$.

EXAMPLE 3. Here we have an example in which Ω is convex and $\alpha' \neq \alpha$. Let $\Omega' = \{(\mathbf{r}, \theta) | -3\pi/4 < \theta < 3\pi/4, 0 < \mathbf{r} < 1\}, \phi \in C^{O}(\partial\Omega')$ be zero on $\mathbf{r} = 1$, $-3\pi/4 \leq \theta \leq 3\pi/4$ and $\theta = 1 - \mathbf{r}$ on $\theta = \pm 3\pi/4$, $0 \leq \mathbf{r} \leq 1$, and $\mathbf{f} \in C^{2}(\Omega') \cap C^{O}(\overline{\Omega'})/\{N\}$ be the variational solution of the Dirichlet problem (for

the minimal surface equation) in Ω' with boundary data ϕ . Next let $0 < \varepsilon < \pi/4$ and define $\Omega = \{(\mathbf{r}, \theta) | \varepsilon - \pi/2 < \theta < \varepsilon + \pi/2, 0 < \mathbf{r} < 1\}$. If we set $\phi = f$ on $\partial\Omega$, then $\phi \in C^*(\partial\Omega)$ and f minimizes J. Notice $\alpha = -\pi/2 + \varepsilon$, $\beta = \pi/2 + \varepsilon$, $\alpha' = \pi/2$, and $\beta' = \beta$. Also Γ^- meets the z-axis tangentially.

EXAMPLE 4. (See the discussion of this example in [8].) Let $\xi \in (\pi/2, \pi)$. Set A = (0,0,1), B = (sin(ξ),0, cos(ξ)), C = (sin(2ξ), 0, cos(2ξ)), D = (0,1,0), L = (0,-1,0) and M = (0,0,0). Consider the quadrilateral Q1 with successive vertices B,D,C,M and let S1 be the surface of least area spanning Q1. Since Q1 has a convex injective projection on the x-y plane, S1 is the graph of a function g(x,y) over the x-y plane. Now extend S1 by reflection across the line segment BM to a surface S; the boundary of S is the polygon Γ with successive vertices A,E,B,D,C,M. Let Ω be the open subset of the x-y plane bounded by the projection of Γ on the x-y plane; notice $\alpha = -\pi$ and $\beta = \pi/2$. Using Theorem 1, we see that $S_0 = S/\Gamma$ is the graph of a function f(x,y) over Ω . Notice Rf(θ) is 0 if $-\pi \le \theta \le 0$, Rf(\cdot) is increasing on $[0,\pi/2]$ (by Theorem 1 (i) and the Corollary to Theorem 3), and Γ^- makes an angle of $2(\pi-\varepsilon)$ with the positive z-axis.

This last part shows that for any angle $\delta \in (0,\pi)$, we can set $\xi = \pi - \delta/2$ and find an example in which $\alpha' = \alpha + \pi$, Rf(θ) is (weakly) increasing on $[\alpha,\beta]$, and Γ^- intersects the positive z-axis in an angle of δ .

REMARK. In [2], the behavior of a (nonparametric) solution of an equation of prescribed mean curvature with prescribed boundary values in a domain with a reentrant corner is examined. The results of [2] can be extended to the case in which ϕ has a jump discontinuity. In fact, by combining the work in [2] with the techniques used above, Theorems 1, 2, and 3 and the Corollary can be proven in this new situation. ACKNOWLEDGEMENT. I wish to thank Professor Alan Elcrat and especially Professor Robert Gulliver for their encouragement, useful suggestions, and incisive questions. I also wish to thank my wife, Sherry, for her assistance.

REFERENCES

- 1. LANCASTER, K. Boundary Behavior of a Non-Parametric Minimal Surface in R^3 at a Non-Convex Point, <u>Analysis</u> <u>5</u> (1985), 61-69.
- ELCRAT, A. and LANCASTER, K. Boundary Behavior of a Non-Parametric Surface of Prescribed Mean Curvature Near a Reentrant Corner, <u>Trans. Amer. Math. Soc.</u> <u>297</u> (1986), 645-650.
- BECKENBACH, E. and RADÓ, T. Subharmonic Functions and Minimal Surfaces, <u>Trans.</u> <u>Amer. Math. Soc.</u> <u>35</u> (1933), 648-661.
- GULLIVER, R. and LESLEY, F. On Boundary Branch Points of Minimizing Surfaces, Arch. Rat. Mech. Anal. <u>52</u> (1973), 20-25.
- GULLIVER, R. Regularity of Minimizing Surfaces of Prescribed Mean Curvature, <u>Annals of Math.</u> <u>97</u> (1973), 275-305.
- OSSERMAN, R. A Proof of the Regularity Everywhere of the Classical Solution to Plateau's Problem, <u>Annals of Math.</u> 91 (1970), 550-569.
- BEESON, M. The Behavior of a Minimal Surface in a Corner, <u>Arch. Rat. Mech. Anal.</u> 65 (1977), 379-393.
- 8. LANCASTER, K. Boundary Behavior of Nonparametric Minimal Surfaces Some Theorems and Conjectures, to appear in the <u>Proceedings of the International Confer-</u> <u>ence on Variational Methods for Free Surface Interfaces</u> (Menlo Park, Calif. 9/85).
- DZIUK, G. Über quasilinear elliptische Systeme mit isotherman Parametern on Ecken der Randkurve, <u>Analysis 1</u> (1981), 63-81.