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ABSTRACT. Let be a domain in R2 which is locally convex at each point of its

boundary except possibly one, say (0,0), be continuous on /{(0,0)} with a jump

discontinuity at (0,0) and f be the unique variational solution of the minimal

surface equation with boundary values . Then the radial limits of f at (0,0)

from all directions in exist. If the radial limits all lie between the lower

and upper limits of at (0,0), then the radial limits of f are weakly monotonic;

if not, they are weakly increasing and then decreasing (or the reverse).

Additionally, their behavior near the extreme directions is examined and a conjecture

of the author’s is proven.
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I. INTRODUCTION.

How does the generalized solution of the Dirichlet problem for the minimal

surface equation with boundary values # behave when has a jump discontinuity

(say at the origin) Under certain mild conditions on the domain R2 we shall

show that the radial limits at (0,0) of the solution, denoted Rf(8), exist for all

8 (,8), where {(r,8) l< 8 < 8, 0< r < r(8)}. Further, on at most three

intervals (i.e. [e,’], [8L, OR], [8",8]) Rf(8) is constant and elsewhere it is

strictly monotonic.

If Rf(8) lies between the lower and upper limits of # at (0,0), then Rf is

weakly monotonic on [,8]. If not, then Rf is not monotonic on [,8] but it is

weakly monotonic on [e, e+n and on [8- ,8]. Under some smoothness and nontangency

assumptions, we shall show that e" =e or e" =e+ and 8" 8 or 8" 8- n

We shall also show that O
R

8
L + when O

L
and O

R
occur. Thus there is at most

one interval on which Rf(8) is constant.

2. PRELIMINARIES.

By we will mean a bounded open subset of 2 with the following properties:

(a) is connected and simply connected. (b) 28 is Lipschitz and N (0,0) e .
(c) is locally convex at each point of its boundary except possibly N. (d) In
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polar coordinates (r,0) about N, {(r,0) a < < 8, 0 < r < r(O)} wlth - < a < 0 <

From (d) we see that near N, the x-axis divides into two components.

DEFINITION. Let be as above. We will denote by C*() those functions

C (/{N}) such that

(N+) lim (P) as P < n {(x,y) ly 0} approaches N and

(N-) =lim 0 (P) as P {(x,y) ly < 0} approaches N

each exist.

Notice 0 f C*() implies 0 has a jump discontinuity at N (possibly with jump 0).

DEFINITION. Let 0 e C*(). Define f f(’,0) to be the function in BV()

which minimizes

J(v) J(v,0) I+ IDvl 2 + /Iv-01

for v BV().

Notice f C2() a C(I{N}) and f 0 on I{N}.

and

We set

SO S0(0) {(x,y,f(x,y)) (x,y) e

F
0 r0(0) {(x,y,0(x,y)) N # (x,y) D}.

Let S be the closure of SO, r be the closure of 0’ F+ be the closure of

FO{(x,y) y> 0}, and F- be the closure of F a{(x,y) y< 0}.

Throughout this paper, we will make the following

ASSUMPTION. f C().
We will need to represent S parametrically. Let us set E {(u,v) lu2+v2 < I},

B {(u,v) E Iv>O}, 8"B {(u,v) E 8Ely>0}, 8’’B {(u,O) l-I < u < I},

B" B ’B, and B’’ B o ’’B. Using the methods of [1] or [2], we can prove the

following propositions.

PROPOSITION I. There exists X (z,y,z) e C(: 3) C2(B: 3) such that X

maps B homeomorphically onto SO X maps ’B strictly monotonically onto PO’
X maps ’’B into the z axis, X(-I,O) (O,O,0(N-)), X(1,0) (O,O,0(N+)), and

X -X =0
u v

2
X
2

X
u v

X +X =0
uu vv

on B. Also, X extends across ’’B by reflection to a function in C2(E: 3) and

x (u,0) (0,0,z (u,0))
u u

Xv(U,O) (Xv(U,O),Yv(U,O),O)
for -I < u < I.
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For each a< e < 8 and t > 0, define

%(t,e) (t cos(e), t sin(e)),

-1m(t,e) (t,e,) X (%(t,e), f(%(t,e))),

lim
Rf(e) t O+ f(k(t,e)) if this exists.

Set Rf(a) (N-), Rf(8) (N+), u() =-i, and u(8) I.

PROPOSITION 2. For all < e < 8, there is a unique u(e) [-I,i] such that

m(t,e) (u(e),O) as t O+

and

Rf(e) z(u(e),0).

Further, u(’) C([,8]), Rfe C([a,8]), and

X (u(e) O) Iz (u(e) 0) (cos(e) sin(e) O)
V U

for all e e (a 8) with lu(e) < I.

REMARK. If X has no branch points on {(u(8),O)l e < e < 82}, then u(.) is

strictly increasing on [81,82]. Also, u(’) is weakly increasing on

From the proof of Theorem 3.2 of [I], we have the following

LEMMA i. Suppose el < e2 8 and 82 81 . Then Rf is weakly monotonic

on [81,82]. Further X maps {(u,0) U(el) u u(e2) strictly monotonically

into the z-axis.

3. BOUNDARY BEHAVIOR.

DEFINITION. We will say condition * holds (for e C*(3)) if Rf(8) E Rf(e,)

lies between (N-) and (N+) whenever < e < 8.

REMARK. If 8 a 7, it follows from Lemma or from standard barrier argu-

ments that * holds for all C (8).
THEOREM i. Suppose * holds. Then

X is strictly monotonic on 8"B, Rf is weakly monotonic on [,8], S has no

branch points in E, Rf is constant on [a,a’]

(i) and [8",8], and Rf is strictly monotonic on [a’,8"], for some a’," g [a,8] with

<

Suppose * does not hold. The

X has one branch point, (u(0),0), in E, z(-,0) is strictly increasing (decreas-

ing) on [-l,u(0)] and strictly decreasing (increasing) on [u(0),l], Rf is

constant on

(ii) [a,a’], [eL,eR], and [8",8], Rf is strictly increasing (decreasing) on [a’,8L]
and Rf is strictly decreasing (increasing) on [8R,8"], for some a’,8",8L,
8R [=,8] with a" < 8L and eL + eR < s’.
PROOF. From Lemma I, we see that * holds iff Rf is weakly monotonic on [e,8]

and if * fails to hold, then Rf is weakly monotonic on [,+ and on [8- ,8].

From [3] we know that X is strictly monotonic on a subset of B iff it is weakly

monotonic there. Since X(u(e),0) (0,0,Rf(e)), X has at most one branch point in
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E, which can only occur at (u(0),0) ([4]). Using Proposition 2 and the subsequent

remark, we see either that one of the conclusions of Theorem holds or that X is

monotonic on ’’B and has a branch point at (u(0),0). We will eliminate this

possibility.

In the case to be eliminated, Rf is weakly monotonic (say increasing) on [,],

strictly increasing on [a’,0L], constant on [0L,eR], and strictly increasing on

[eR,8"], for some " 0
L

< 0L+ =< O
R

< " <-- . We may rotate the x-y plane so that

O
R

0 and (by a conformal map of B into B fixing (-I,0) and (I,0)) we may assume

that u(0) 0. As in [5], there exist neighborhoods U and U" of 0 in E and a

c-l-diffeomorphism F: U" U with DF(0) e’id for some 0 # e such that

(z + ix) (w) (F(w))m

y(w) Im(A(F(w)) n) + o(lwl n)

for all w U" where 0 # A a + ib and n > m > are integers. Suppose we set

s + it F(w) and x x F
-I -i -I my y F z z F Then (z+ix)()

for m C U. Let y be the image of the real axis under F. Then y is tangent to

the real axis at the origin and, since x(w) 0 for w real, x(m) 0 for m y. If

m re then x(r,6) rmsin(m6) and the only curves on which x vanishes are

6 k/m for all integers k. Thus y must be the real axis in U. Since y(w) 0

for w real, y() 0 for m real. This means that b 0 and

g(m) alm(mn) + o(Imln). If o is a curve in U from (r,6) (e,0) to

(r,6) (,) ( small) such that (x(o), g(o)) is star-shaped with respect to the

origin, then the sign pattern of x(o) is +,- and 9() is +,-,+. Thus m must
2

be 2, n must be 3, z(s,o) s and so Rf(8) z(F(u (O))) cannot be monotonic on

(a,B). Q.E.D.

In [I], the case C() and a > is considered and the conjecture that

O
R

8
L

w is mentioned. The following theorem proves that this is always true.

THEOREM 2. In case (ii) of Theorem I, O
R

O
L

.
PROOF. If Q is an interior branch point of X, then there is a unique unit

vector n(Q) such that as P E approaches Q, the unit normal n(P) to X(E) at

P approaches n(Q) ([6]). Since

x (u(O),O) (0,O,z (u(8),O) and
u u

X (u(0) O) IZu(U(O) 0)[(cos(0) sin(0) O)

we see that n(0) n(u(0),0) (sin(0),-cos(0),O)when < 0 < 0L or OR< 0 < B
If we let 0/0L-, we get n(Q) +(sin(0L), -cos(0L),0) and if we let 0/0R+, we get

n(Q) +(sin(0R), -cos(0R),O) where Q (u(O),O). Thus O
R

0
L + 7. Q.E.D.

A question of interest is to determine the asymptotic behavior of Rf(0) for

0 > O
R

near O
R

A discussion of the asymptotic behavior of Rf(0) for 0 < 0
L

near 0
L is similar. We may assume that Rf is increasing on [0R, B].

As in the proof of Theorem I, let us assume that O
R

0 and u(0) 0; then
2 2 1/2

Rf() Z(F(u(0))) and z(s,0) s Since z() + ix() (z + ix) and

alm((z + i) 3/2) + o(Izl+ i13/2). Thus
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Yx 3a Re((z + ix)
When x 0, we get

/2)/ + o(Iz +

yx(Z) 312 a zi/212 + o(Izl12).

Next, if 0 O
R

< 0 < 8", then Rf(0) is equal to that value of z > o for

which yX(z) tan(0). For this value of z

z + o([z I) (2 tan(0)/3a2)

and so asymptotically as 0/0+,

Rf(0) (2/3a) 2
0
2

We wish to examine the behavior of Rf(0) near O and O 8.

THEOREM 3. Let # 6 C*() and let f 6 BV() minimize J(-,#) over BV().

Suppose that F+ (F-) is a C curve in a neighborhood of (N,(N+)) ((N,#(N-)))

which meets the z-axis nontangentially. Suppose further that the unit normal to the

graph of f extends continuously to the corner formed by F+ (F-) and the z-axis.

Then 8 "= B or B" 8- (e" e or e" =e +).

PROOF. The proof is essentially the same as that of Theorem 2. We will prove

8" 8 or 8" 8 . Let 0 < 8" approach 8"; then n(0) approaches

n(8") +/- (sin(8"), -cos(8"),O). Since the normal to the corner is +/-(sin(8),

-cos(8),O), we see that 8" 8 or 8" 8 . Q.E.D.

REMARK. If F+(F -) is a line segment in a neighborhood of (N,#(N+)) (N, (N-)))

which meets the z-axis nontangentially, then [7] (also [9]) implies that the

hypotheses of Theorem 3 are satisfied.

Let us say that a "fan" exists at 0
0

when Rf(8) is constant on a nontrivial

interval containing 00. Since 8 e < 2, we get

COROLLARY. Suppose that the hypotheses of Theorem 3 are satisfied for F+ and

F Then no more than one "fan" can occur.

4. EXAMPLES.

EXAMPLE I. (the helicoid). Consider the functions f(x,y) over

$ {(r,0)le< 0 < 8, O< r < with - < < 8 < whose graph is given parametrically

by

Y(s,t) (t cos(s), t sin(s),s).

F
+/-

Then f 6 C*() Rf(8) 0 and meet the z-axis at right angles. Here we

see that Rf is strictly increasing, e" e, and 8" 8.

EXAMPLE 2. (Scherk’s surface). Consider

f(x,y) in(sin(y)) in(sin(x))

over {(r,0) 0 <r< i, e<0<8 }, where O<e<S</2.

Then Rf(O) in(tan(0)) and F- meet the z-axis at right angles. Notice Rf is

strictly increasing on [e,8], " , and 8" 8.

EXAMPLE 3. Here we have an example in which is convex and e" # . Let

n" ={(r,8)I-3/4 < 0 < 3n/4, 0 < r < i}, C C(n") be zero on r I,

-3/4 O 3/4 and O l-r on 0 +/-3/4, 0 r I, and
C2(’) C(’)/{N}) be the variational solution of the Dirichlet problem (for

f
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the minimal surface equation) in " with boundary data . Next let 0 < e < /4

aud define {(r,8) le /2 < 8 < e+/2, 0 < r I}. If we set f on ,
then E C*() and f minimizes J. Notice /2 + e, 8 /2 + e, " [/2,

and 8" 8. Also F meets the z-axis tangentially.

EXAMPLE 4. (See the discussion of this example in [8].) Let (/2, ). Set

A (0,0,I), B (sin(),0, cos()), C (sin(2), O,cos(2)), D (0,1,0),

h (0,-1,0) and M (0,0,0). Consider the quadrilateral QI with successive

vertices B,D,C,M and let $I be the surface of least area spanning QI. Since Q1

has a convex injective projection on the x-y plane, SI is the graph of a function

g(x,y) over the x-y plane. Now extend $I by reflection across the line segment BM

to a surface S; the boundary of S is the polygon F with successive vertices

A,E,B,D,C,M. Let be the open subset of the x-y plane bounded by the projection of

F on the x-y plane; notice - and 8 /2. Using Theorem I, we see that

S
O S/F is the graph of a function f(x,y) over . Notice Rf() is 0 if- O, Rf(-) is increasing on [0,/2] (by Theorem (i) and the Corollary to

Theorem 3), and F makes an angle of 2(-) with the positive z-axis.

This last part shows that for any angle (0,), we can set -/2 and

find an example in which " + , Rf(O) is (weakly) increasing on [,8], and

F intersects the positive z-axis in an angle of

REMARK. In [2], the behavior of a (nonparametric) solution of an equation of

prescribed mean curvature with prescribed boundary values in a domain with a reentrant

corner is examined. The results of [2] can be extended to the case in which has a

jump discontinuity. In fact, by combining the work in [2] with the techniques used

above, Theorems I, 2, and 3 and the Corollary can be proven in this new situation.
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