MAXIMAL SUBALGEBRA OF DOUGLAS ALGEBRA

CARROLL J. GULLORY

Department of Mathematics University of Southwestern Louisiana Lafayette, Louisiana 70504

(Received April 1, 1987)

ABSTRACT. When q is an interpolating Blaschke product, we find necessary and sufficient conditions for a subalgebra B of $\operatorname{H}^{\infty}[\overline{q}]$ to be a maximal subalgebra in terms of the nonanalytic points of the noninvertible interpolating Blaschke products in B. If the set $\operatorname{M}(B) \cap Z(q)$ is not open in Z(q), we also find a condition that guarantees the existence of a factor q_0 of q in $\operatorname{H}^{\infty}$ such that B is maximal in $\operatorname{H}^{\infty}[\overline{q}]$. We also give conditions that show when two arbitrary Douglas algebras A and B, with $A \subseteq B$ have property that A is maximal in B.

KEY WORDS AND PHRASES. Maximal subalgebra, Douglas algebra, interpolating sequence, sparse sequence, Blaschke product, inner functions, open and closed subset, nonanalytic points, support set, Q-C level sets.

1980 AMS SUBJECT CLASSIFICATION CODE. 46J15, 46J20.

1. INTRODUCTION.

Let D be the open unit disk in the complex plane and T be its boundary. Let L^{∞} be the space of essentially measurable functions on T with respect to the Lebesgue measure. By H^{∞} we mean the family of all bounded analytic functions in D. Via identification with boundary functions, H^{∞} can be considered as a uniformly closed subalgebra of L^{∞} . A uniformly closed subalgebra B between H^{∞} and L^{∞} is called a Douglas algebra. If we let C be the family of continuous functions on T, then it is well known that $H^{\infty}+C$ is the smallest Douglas algebra containing H^{∞} properly. For any Douglas algebra B, we denote by M(B) the space of nonzero multiplicative linear functionals on B, that is, the set of all maximal ideals in B. An algebra B_0 is said to be a maximal subalgebra of B, if B_1 is another algebra with the property that $B_0 \subseteq B_1 \subseteq B$, then either $B_1 = B_0$ or $B_1 = B$.

An interpolating sequence $\{z_n\}_{n=1}^{\infty}$ is a sequence in D with the property that for any bounded sequence of complex numbers $\{\lambda_n\}_{n=1}^{\infty}$, there exists f in \mathbb{H}^{∞} such that $f(z_n) = \lambda_n$ for all n. A well-known condition states that a sequence $\{z_n\}_{n=1}^{\infty}$ is interpolating if and only if

$$\inf_{\substack{n \ n \neq m}} \frac{z_{m} - z_{n}}{1 - \overline{z_{n}} z_{m}} = \delta > 0.$$
(1.1)

A Blaschke product

$$q(z) = \prod_{n=1}^{\infty} \frac{|z_n|}{z_n} \left(\frac{z - z_n}{1 - \overline{z_n} z} \right)$$
(1.2)

is called an interpolating Blaschke product if its zero set $\{z_n\}_{n=1}^{\infty}$ is an interpolating sequence $(|z_n|/z_n \equiv 1 \text{ is understood whenever } z_n \equiv 0)$. A sequence $\{z_n\}_{n=1}^{\infty}$ is said to be sparse if it is an interpolating sequence and

$$\lim_{n \to \infty} \prod_{n \neq m} \left| \frac{z_m - z_n}{1 - z_n z_m} \right| = 1.$$
(1.3)

For a function q in H^{\circ}+C, we let Z(q) = {m $\in M(H^{\circ}+C)$:q(m) = 0} be the zero set of ϕ in M(H^{\circ}+C). An inner function is a function in H^{\circ} of modulus 1 almost everywhere on T. We denote by H^{\circ}[b] the Douglas algebra generated by H^{\circ} and the complex conjugate of the inner function b.

We put $X = M(L^{\infty})$. Then X is the Shilow boundary for every Douglas algebra. For a point in $M(H^{\infty})$, we denote by μ_x the representing measure on X for x and by μ_x the support set for μ_x . For a function q in L^{∞} (in particular if q is an interpolating Blaschke product), we put $N(\overline{q})$ the closure of the union set of $\sup \mu_x$ such that $x \in M(H^{\infty}+C)$ and $\overline{q}|_{supp} \mu_x \notin H^{\infty}|_{supp} \mu_x$. Roughly speaking, $N(\overline{q})$ is the set of nonanalytic points of q. Set $QC = H^{\infty} + C \cap \overline{H^{\infty} + C}$ and for x_0 in X, let $Q_x = \{x \in X: f(x) = f(x_0) \text{ for } f \in QC\}$. Q_{x_0} is called the QC-level set for x_0 [9]. For an inner function q, K. Izuchi

has shown the following [5, Theorem 1(i)].

THEOREM 1. If \boldsymbol{q} is an inner function that is not a finite Blaschke product, then,

$$N(q) = \bigcup \{Q_x; x Z(q)\}.$$

$$(1.4)$$

In particular, the right side of 1.4 is a closed set. Now assume that q is an interpolating Blaschke product, and let B be a Douglas algebra contained in $\operatorname{H}^{\infty}[\overline{q}]$. We will always assume that $\operatorname{M}(B) \cap Z(q)$ is not an open set in Z(q), for Izuchi has shown [6] that if B is a maximal subalgebra of $\operatorname{H}^{\infty}[\overline{q}]$, then $\operatorname{M}(B) \cap Z(q)$ is not open in Z(q). We will give answers to the following two questions. When is B a maximal subalgebra of $\operatorname{H}^{\infty}[\overline{q}]$ or when is there a factor q_0 of q in $\operatorname{H}^{\infty}$ such that B is maximal in $\operatorname{H}^{\infty}[\overline{q}_0]$? These answers will be in terms of the nonanalytic points of q and the invertible inner functions of $\operatorname{H}^{\infty}[\overline{q}]$ that are not invertible in B.

For a Douglas algebra B, we denote by N(B) the closure of $\cup \{ \sup p \mid \mu_x; x \in M(H^{\circ}+C)/M(B) \}$. In particular N(H^o[q]) = N(q). In general if A and B are Douglas algebras such that $A \subseteq B$, we put $N_A(B)$ = the closure of $\cup \{ \text{supp } \mu_x : x \in M(A)/M(B) \}$ and for any inner function b, $N_A(b)$ = the closure of $\cup \{ \text{supp } \mu_x : x \in M(A), |b(x)| < 1 \}$.

It is shown in [7, Corollary 2.5] that if $B \subseteq H^{\infty}[\overline{q}]$, then $N(B) \subseteq N(\overline{q})$, and it is not hard to show that $N(\overline{q})/N(B) \ge N_{\mathbf{p}}(\overline{q})$ (in a sense the set $N_{\mathbf{p}}(\overline{q})$ is generated by the nonanalytic points $M(B)/M(H^{\infty}[\overline{q}]) \subseteq M(H^{\infty} + C)/M(H^{\infty}[\overline{q}]))$.

2. OUR MAIN RESULT.

We'll need the following lemma. It shows how small $M(B)/M(H^{\tilde{q}}]$ must be if B is to be a maximal subalgebra of $H^{\circ}[q]$. Let $\Omega = \{b : b \text{ is an interpolating Blaschke product}$ with $\mathbf{b} \in \mathbf{H}^{\infty}[\mathbf{q}]$, and $\Omega(\mathbf{B}) = \{\mathbf{b}_{\Omega} \in \Omega; \mathbf{b}_{\Omega} \notin \mathbf{B}\}.$

LEMMA 1. Let q be an interpolating Blaschke product and B be a Douglas algebra <u>contained in</u> $\operatorname{H}^{\infty}[\overline{q}]$. Suppose for all $b_{0} \in \Omega(B)$, we have that $N_{B}(\overline{q}) \subseteq N_{B}(\overline{b}_{0})$. Then B is a maximal subalgebra of $H^{\infty}[q]$.

PROOF. It suffices to show that if $b \in \Omega(B)$, then $B[b] = H^{\infty}[q]$. Hence the only Douglas algebra between B and $H^{\circ}[q]$ that contains B properly is $H^{\circ}[q]$. It is clear that $M(H^{\circ}[\overline{q}]) \subseteq M(B[\overline{b}])$. We show that $M(B[\overline{b}]) \subseteq M(H^{\circ}[\overline{q}])$. Now $M(B[\overline{b}]) = \{m \in M(B) : |b(m)|=1\}$. It suffices to show that if $m \notin M(H^{\infty}[\overline{q}])$, then $m \notin M(B[\overline{b}])$. Let $m \in M(B)$ such that $\mathfrak{m} \notin M(\mathfrak{H}^{\widetilde{p}}[q])$. Then $\overline{q}|_{supp \mu_{m}} \notin \mathfrak{H}^{\widetilde{p}}|_{supp \mu_{m}}$ and since $N_{B}(\overline{q}) \subseteq N_{B}(\overline{b})$, we have that $b|_{supp \mu_m} \notin H^{\infty}|_{supp \mu_m}$. Thus |b(m)| < 1 and we get $m \notin M(B[b])$. This shows that $M(B[b]) \subset M(H^{\infty}[q])$, and B is maximal in $H^{\infty}[q]$.

Using Theorem 1 above, it is not hard to show directly that N(B[b]) = N(q). However, by Proposition 4.1 of [7], this condition is not sufficient.

We let $E = N_{\mathbf{p}}(\mathbf{q})$. This can be a very complicated set. For example, it can contain supp μ_{v} where x belongs to a trivial Gleason part or a Gleason part where |q| < 1, but yet q \neq 0 on this part [see 3]. So for B to be maximal in $H^{\infty}[q]$, E must be as simple as possible. To see how simple, we set $\wedge(B) = \{b \in \Omega(B) : B \subseteq H^{\infty}[\overline{b}]\}$ and $\wedge^{\star}(B) = \{a \in \Omega(B) : a \notin \Lambda(B)\}$. Now let $E^{\star} = \cap N(\overline{b}), E^{\star \star} = \cap N(\overline{b}_{0}), E^{\star}_{0} = E^{\star} \cap E$ and $b \in \Lambda(B)$ $b_{0} \in \Omega(B)$ $\mathbf{E}_{0}^{\star\star} = \mathbf{E}^{\star\star} \cap \mathbf{E}$. Note that if $\mathbf{E}_{0}^{\star\star} = \phi$, then there are interpolating Blaschke products \mathbf{a}_{0} and \mathbf{a}_{1} in $\Lambda^{\star}(\mathbf{B})$ such that $\mathbf{N}_{\mathbf{B}}(\mathbf{q}) \cap \mathbf{N}(\mathbf{a}_{0}) \cap \mathbf{N}(\mathbf{a}_{1}) = \phi$. Thus we get $\mathbf{B} \subset \mathbf{B}[\mathbf{a}_{0}] \subset \mathbf{H}^{\infty}[\mathbf{q}]$. To see this, just note that both $N_{B}(\overline{q}) \cap N(\overline{a}_{0}) \neq \phi$ and $N_{B}(\overline{q}) \cap N(\overline{a}_{1}) \neq \phi$ since a_{0} and a_{1} belong to $\Lambda^{*}(B)$. Since their intersection is empty, there is an $x_{1} \in M(B)$ such that $a_0|_{supp \mu_{x_1}} \in H^{\infty}|_{supp \mu_{x_1}}$. Thus $N_{B[a_0]}(q) \subset N(q)$, which implies that $B[a_0] \subset H^{\infty}[q]$. Obviously, $B \subset B[a_0]$, so B cannot be maximal in $H^{\infty}[q]$ unless $E_0^{**} \neq \phi$. We now state. PROPOSITION 1. Let B be a Douglas algebra properly contained in H°[q], and suppose $E_0^{\star\star} \neq \phi$. Then the following statements are equivalent:

(i)
$$N(B) = N(q);$$

(ii) B is a maximal subalgebra of $H^{\infty}[q]$; iii) $E_0^{\star \star} = E_0^{\star} = E$;

(iii)
$$E_0^{**} = E_0^* = H$$

(iv)
$$E_0^{\star\star} = N_p(q)$$

PROOF. We prove the following: (i) \rightarrow (ii) \rightarrow (iii) \rightarrow (iv) \rightarrow (ii) \rightarrow (i). Suppose (i) holds. We will show that $N_{R}(q) \subset N_{R}(b)$ for all $b \in \Omega(B)$. Using Lemma 1, this will prove that B is a maximal subalgebra of $H^{\infty}[q]$. Let b ϵ $\Omega(B)$ and consider the Douglas algebra B[b]. We have $B \subseteq B[\overline{b}] \subseteq H^{\infty}[\overline{q}]$, hence $N(B) = N(B[\overline{b}]) = N(\overline{q})$. Now $N(\overline{q}) = N(\overline{q})$. $N(B) \cup N_{p}(q)$, so by the above equality we have that $N_{p}(q) \subseteq N(B[\overline{b}])$. Thus, if $x \in M(B)$ such that $\overline{q}|_{supp \mu_{\downarrow}} \stackrel{\mu^{\oplus}}{=} \lim_{supp \mu_{\downarrow}} \lim_{sup \mu_{\downarrow}} \lim_{$ and $N_{R}(q) \subseteq N_{R}(b)$. We have (i) \rightarrow (ii).

Next suppose that (ii) holds. It is clear that $E_0^{**} \subseteq E_0^* \subseteq E$. We must show that $\mathbf{E}_{0}^{*}|\mathbf{E}_{0}^{**}$ and $\mathbf{E}|\mathbf{E}_{0}^{*}$ are empty sets. First we show that $\mathbf{E}_{0}^{*}|\mathbf{E}_{0}^{**}$ is empty. Suppose not. Then there is an $x \in M(B)$ and a $b_0 \in \Lambda^*(B)$ such that $\overline{b_0}|_{supp \mu_x} \in H^{\infty}|_{supp \mu_x}$ and $\sup \mu_x \subseteq E_0^{\star}$. It is clear by Theorem 1 that $\sup \mu_x \cap N(\overline{b_0}) = \phi$. Consider the algebra $B[\overline{b}_0]$. Since $b_0 \in \Lambda^*(B)$, $E \subseteq B[\overline{b}_0]$. Since supp $\mu_x \subseteq N(\overline{q})$ and supp $\mu_x \notin N(\overline{b}_0)$, we have that $|b_0(x)| = 1$, so we have supp $\mu_x \subseteq N(\overline{q})/N_{B[\overline{b}_{\alpha}]}(\overline{q})$. This implies that $B[\overline{b}_0] \subseteq H^{\infty}[\overline{q}]$,

which is a contradiction. So $E_0^{\star\star} = E_0^{\star}$. Now we show that E/E_0^{\star} is empty. Again suppose not. Hence there is a $y \in M(B)$ such that supp $\mu_y \subseteq E$, but supp $\mu_y \not \subseteq E_0^{\star}$. There is a $b \in \Lambda(b)$ such that supp $\mu_y \subseteq N(b)$. Again this implies that $\bar{b}|_{supp \mu_v} \in H^{\infty}|_{supp \mu_v}$. Thus we have that $B \not\subseteq B[\bar{b}]$ (since b $\epsilon \Lambda(B)$ and $B[\overline{b}] \subseteq H^{\infty}[\overline{q}]$ (since supp $\mu_{y} \subseteq N(\overline{q})/N_{\overline{B[b]}}(\overline{q})$), which is a contradiction. So we get $\overline{E_{0}^{*}} = E$. This shows that (ii) \rightarrow (iii). It is trivial that if (iii) holds, $\overline{E_{0}^{**}} = N_{\overline{B}}(\overline{q})$.

If (iv) holds and b is any interpolating Blaschke product in $\Omega(E),$ then by (iv) $N_{R}(\overline{q}) \subseteq N_{R}(\overline{b})$ so by Lemma 1, B is a maximal subalgebra of $H^{\infty}[\overline{q}]$.

Finally, suppose (ii) holds. We are going to show that N(B) = N(q). Suppose not. Then $N(B) \subseteq N(q)$. By Theorem 1 there is a Q-C level set Q with $N(B) \cap Q = \phi$. Put $B_0 = [H^{\tilde{\omega}}, \tilde{I}; I \text{ is an interpolating Blaschke product with } I \in H^{\tilde{\omega}}[q] \text{ and } \tilde{I}|_0 \in H^{\tilde{\omega}}|_0].$ By Proposition 4.1 of [7], we have $B_0 \subset H^{\infty}[\overline{q}]$ and $N(B_0) = N(\overline{q})$. Since $N(B) \cap Q = \phi$, we also have $B \subseteq B_0$ (because $N(B) \subseteq N(B_0)$). This implies that B is not a maximal subalgebra of $H^{\infty}[q]$, which is a contradiction. Thus N(B) = N(q).

Now suppose we have that $E_0^{\star\star} \subseteq E_0^{\star} \subseteq E$ ($E_0^{\star\star} = \phi$ is possible). When is there a factor q_0 of q in H^{∞} such that B is a maximal subalgebra of $H^{\infty}[q_0]$ $(B = H^{\infty}[q_0]]$ is not possible)? To answer this question, let $\Omega_0 = \{q_0; q_0 \in H^{\infty}\}$, and $\Omega_0(B) = \{q_0 \in \Omega_0 : B \subseteq H^{\infty}[q_0]\}.$

Set $F = \bigcap_{q_0 \in \Omega_0(B)} N(q_0)$. Suppose $F = N(q_0)$ for some factor q_0 of q in H^{∞} . Then

 $B \subseteq H^{\infty}[\overline{q}_0]$. So q_0 is our possible candidate. Next, let $\mathfrak{q}_0 = \{c:c \text{ is an interpolating}\}$ Blaschke product with $c \in H^{\infty}[q_0]$ },

$$\Omega_{q_0}(B) = \Omega_{q_0} \cap \Omega(B), \Lambda_{q_0}(B) = \Omega_{q_0}(B) \cap \Lambda(B), \Lambda_{q_0}^{*}(B) = \Omega_{q_0}(B) \cap \Lambda^{*}(B),$$

$$F_0 = E \cap N(\overline{q_0}), F^{*} = E_0^{*} \cap F, F^{**} = \bigcap_{\substack{c \in \Omega \\ q_0}(B)} N(\overline{c}), F_0^{*} = F^{*} \cap F_0, \text{ and finally}$$

$$F_0^{**} = F^{**} \cap F_0.$$

We have the following.

COROLLARY 1. Let q_0 be a factor of q in H^{∞} such that $F = N(q_0)$ and assume $F_0^{**} \neq \phi$. If any of the following conditions hold:

(i)
$$F_0 = F_0^* = F_0^{**}$$

(ii) $F_0^{**} = N_B(H_0)$, where $H_0 = \bigcap_{q_0 \in \Omega(B)} H^{\infty}[q_0]$.

<u>Then</u> B is a maximal subalgebra of $H_0 = H^{\circ}[q_0]$ where $q_0 \in \Omega_0(B)$.

The fact that $F = N(q_0)$ for some $q_0 \in \Omega_0(B)$ implies that $H_0 = H^{\infty}[\overline{q_0}]$ and our corollary follows from Proposition 1.

We now consider this question for the genral Douglas algebras. Let A and B be Douglas algebras such that $A \subseteq B$ and there is an inner function q with $B \subseteq A[q]$. When this occurs we say that A is near B. It is well known that if $B = L^{\infty}$ and A is any Douglas algebra properly contained in B, then A is not near B, that is, $B \subseteq A[q]$ for any inner function q. In fact L^{∞} is not countably generated over any Douglas algebra A [10]. So by the results of C. Sundberg [10] any Douglas algebra B which is countably generated over A is also near it.

The following result comes from [2, Lemma 5] and gives equivalent conditions for two Douglas algebras to be near each other [see 11, Theorem 1 for a similar result].

THEOREM 2. Let A and B be Douglas algebras with $H^{\circ}+C \subsetneq A \subseteq B$ and q be an inner

function. Then the following statements are equivalent.

(i)
$$M(A) = Z_{\dot{A}}(q) \cup M(B)$$

(ii) $\phi B \subseteq A$.

<u>where</u> $Z_A(q) = Z(q) \cap M(A)$.

PROOF. Assume (i) holds; we show that $\phi B \subseteq A$. Let b be any interpolating Blaschke product for which \overline{b} is in B. If x is in $Z_A(b)$, we show that x is also in $Z_A(\mathfrak{q})$. Now x is in M(A) and b(x) = 0 implies that x is not in M(B), since \overline{b} is in B. So by (i) we have that x must be in $Z_A(\mathfrak{q})$. Thus $Z_A(b) \subseteq Z_A(\mathfrak{q})$, and by Theorem 1 of [4] we have \overline{b} is in A. Now let f be any function in B. By the Chang Marshall Theorem [1,8] there is a sequence of functions $\{h_n\}$ in \mathbb{H}^{∞} and a sequence of interpolating Blaschke products $\{b_n\}$ with $\overline{b_n} \in B$ for all n, such that $h_n \overline{b_n} \to f$. But $h_n(\overline{b_n}) \to f$ belongs to A since b_n is in A for all n. This proves (ii). Assume (ii) holds. Let x be in M(A) but not in M(B). Then there is an inner function b which is invertible in B such that |b(x)| < 1. For any positive integer n, the function $f_n = q\overline{b}^n$ is in A, so

$$|g(x)| = |b(x)|^{n} |f_{n}(x)| \le |b(x)|^{n}.$$

Letting $n \rightarrow \infty$ we get (x) = 0. This proves (i).

Set
$$Z_B(q) = M(B) \cap Z_A(q)$$
 and $Z_B^*(q) = Z_A(q)/Z_B(q)$; then $M(A)/M(B) = \bigcup P_x$,
 $x \in Z_B^*(q)$

since $M(A) = M(B) \cup Z_{A}(q)$.

As we have previously done, let $\Omega(B,A)$ be the set of interpolating Blaschke products b such that $b \in B$ but $b \notin A$ and set $W^* = \bigcap N_A(\overline{b})$. We assume $W^* \neq \phi$. $b \in \Omega(B,A)$

Using Proposition 1, Theorem 2 and Lemma 1, we have the following result.

PROPOSITION 2. Let A and B be arbitrary Douglas algebras such that A is near B. Then the following statements are equivalent:

> (i) $N_{A}(B) \subseteq N_{A}(\overline{b})$ for all $b \in \Omega(B,A)$; (ii) A is a maximal subalgebra of B; (iii) $W^{*} = N_{A}(B)$.

PROOF. Assume that (i) holds. Since A is near to B, there is an inner function such that $M(A) = M(B) \cup \{ \bigcup_{x \in Z_B^*} P_x \}$. If we set $A^* = \bigcup_{x \in Z_B^*} P_x$, then it is $x \in Z_B^*(\phi)$

÷

immediate that

$$N_A(B) = \text{closure of } \cup \{ \text{supp } \mu_x : x \in A^{\circ} \}.$$

Let b be any alement in $\Omega(B,A)$. By (i) we have that $N_A(B) \subseteq N_A(b)$. As in proof of Lemma 1 we have that A[b] = B. Thus is a maximal in B.

Assume that (ii) holds, and let $x \in A^*$. Since A is near B, we have that $M(A) = M(B) \cup A^*$. If $b \in \Omega(B,A)$, then by our hypothesis $A[\overline{b}] = B$, which implies that if $y \in M(A)$ and |b(y)| = 1, then $y \in M(B)$ (since $M(A[\overline{b}]) = \{g \in M(A) : |b(g)| = 1\} = M(B)$). So, if supp $\mu_x \subset N_A(B)$, the $\overline{b}|_{supp\mu_x} \notin H^{\infty}|_{supp\mu_x}$. Thus $N_A(B) \subseteq N_A(\overline{b})$ for all $b \in \Omega(B,A)$. This implies that $N_A(B) \subseteq W^*$

To show what $W \stackrel{\star}{\subseteq} N_A(B)$, let $b \in \Omega(B, A)$. Hence $b \in B$; therefore we have

$$\begin{split} N_{A}(\overline{b}) &= \text{closure of } \cup \{ \text{supp } \mu_{x}; \ x \in M(A), \ |b(x)| < 1 \} \\ &= \text{closure of } \cup \{ \text{supp } \mu_{x}; \ x \in M(A)/M(B), \ |b(x) < 1 \} \\ &\subseteq \text{closure of } \cup \{ \text{supp } \mu_{x}; \ x \in M(A)/M(B) \} \\ &= N_{A}(B). \end{split}$$

740

Since this is true for any $b \in \Omega(B, A)$, we have $N_A(B) \supseteq W^*$. Thus $W^* = N_A(B)$ if A is maximal in B.

It is trivial that if (iii) holds, $N_A(B) \subseteq N_A(b)$ for all $b \in \Omega(B, A)$. We are done.

In Proposition 4.1 of [7] Izuchi constructed a family of Douglas algebras B contained in $\operatorname{H}^{\infty}[\overline{q}]$ with the property that $N(B) = N(\overline{q})$. By Proposition 1, we have that this family is a family of maximal subalgebras of $\operatorname{H}^{\infty}[q]$.

Finally we close this paper with the following question that I have been uable to answer.

QUESTION 1. Recall that if q is an interpolating Blaschke product, then $N(\overline{q}) = N(B) \cup N_{B}(\overline{q})$ for any Douglas algebra with $B \subseteq H^{\infty}[q]$. Does there exist a Douglas algebra $B_{O} \subseteq H^{\infty}[\overline{q}]$ with $N_{B}(\overline{q}) = N(\overline{q})$?

REFERENCES

- 1. CHANG, S.Y. A Characterization of Douglas Subalgebras, Acta. Math. 137 (1976) 81-89.
- 2. GUILLORY, C.J. Lemmas on Thin Blaschke Products and Nearness of Douglas Algebras, Preprint.
- GUILLORY, C.J. Douglas Algebras of the form H[∞][q], to appear in <u>J. Math Anal. &</u> <u>Appl</u>., 1987.
- GUILLORY, C.J., IZUCHI, K., and SARASON, D. Interpolating Blaschke Products and Division in Douglas Algebras, <u>Proc. Royal Irish Acad. Sect.</u>, A84 (1984) 1-7.
- IZUCHI, K. QC-Level Sets and Quotients of Douglas Algebras, <u>J. Funct. Anal.</u>, 65 (1986), 293-308.
- IZUCHI, K. Zero sets of Interpolating Blaschke Products, <u>Pacific J. Math.</u>, <u>19</u> (1985), 337-342.
- 7. IZUCHI, K. Countably Generated Douglas Algebras, To appear in Trans. Amer. Math. Soc.
- 8. MARSHALL, D. Subalgebras of L^{°°} containing H^{°°}, <u>Acta Math.</u> 137 (1976), 91-98.
- SARASON, D. The Shilov and Bishop decomposition of H^w+C, Conference on Harmonic Analysis in Honor of A. Zygmund, in Wadsworth Math Series, pp. 461-474, California, 1981.
- SUNDBERG, C. A Note on Algebras between L[®] and H[®] <u>Rocky Mountain J. Math.</u> <u>11</u> <u>2</u> (1981), 333-335.
- YOUNIS, R. Division in Douglas Algebras and Some Applications, <u>Arch. Math.</u>, <u>Vol. 45</u>, 555,560.