SMOOTH STRUCTURES ON SPHERE BUNDLES OVER SPHERES

SAMUEL OMOLOYE AJALA

Institute for Advanced Study School of Mathematics Princeton, New Jersey 08543 USA

and

Department of Mathematics University of Lagos Akoka - Yaba Lagos - Nigeria West Africa

(Received May 30, 1986)

ABSTRACT. In [1] R. De Sapio gave a classification of smooth structures of a p-sphere bundle over a q-sphere with one cross-section and p < q. In [2] J. Munkres also gave a classification up to concordance of differential structures in the case where the bundle has at least two cross-sections. In [3] R. Schultz gave a classification in the case $p \ge q$. Here we will give a classification of the p-sphere bundle over a q-sphere without any cross-section and p < q.

KEY WORDS AND PHRASES. Smooth structures, differential classification, internal groups. 1980 AMS SUBJECT CLASSIFICATION CODES: 57R55.

1. INTRODUCTION

Let E represent p-sphere bundle over a q-sphere with $\beta \in \pi_{q-1}SO(p+1)$ the characteristic class of the corresponding p+1-disc bundle over the q-sphere. In [4] R. De Sapio gave a complete classification of the special case where $\beta = 0$. In [5] and [6] Kawakubo and Schultz respectively also gave a classification of E for this special case. This author in [7] gave a generalization of this special case to product of three ordinary spheres. In [1] a classification of E was given for p < q - 1 and where E has a cross-section and $\beta \neq 0$. In [3] Schultz gave a classification of E for $p \ge q$ and E is without cross-section. We shall here remove the fact that E has a cross-section so that not every element of $\pi_{q-1}SO(p+1)$ can be pulled back to the element $\pi_{q-1}SO(p)$ in the homomorphism S_{\star} : $\pi_{q-1}SO(p) + \pi_{q-1}SO(p+1)$ induced by the inclusion s : SO(p) + SO(p+1). Sⁿ denotes the unit n-sphere with the usual differential structure in the Euclidean

(n+1)-space $\mathbb{R}^{n+1} \cdot \mathbb{Z}^n$ denotes an homotopy n-sphere and \mathbb{H}^n denotes the group of homotopy n-spheres. H(p,k) denotes the subset of \mathbb{H}^p which consists of those homotopy p-sphere \mathbb{Z}^p such that $\mathbb{Z}^p \times S^k$ is diffeomorphic to $S^p \times S^k$. By [4, Lemma 4], H(p,k) is a subgroup of \mathbb{H}^p and it is not always zero and in fact in [7] we showed that if $k \ge p-3_pH(p,k) = \mathbb{H}^p$. We shall adopt the notation $\mathbb{E}(\mathbb{Z}^q)$ to represent the total space of a p-sphere bundle over a homotopy q-sphere \mathbb{Z}^q . We will then prove the following:

THEOREM. If M is a smooth, n-manifold homeomorphic to a p-sphere bundle over a q-sphere with total space E where n = p+q \ge 6 and p < q then there exists homotopy spheres Σ^{q} and Σ^{n} such that M is diffeomorphic to E(Σ^{q}) # Σ^{n} . We shall define a pairing

and show that if $\beta \in \pi_{q-1}SO(p+1)$ is the characteristic class of a p-sphere bundle over an homotopy q-sphere Σ^{q} , then $G(\pi_{p}SO(q),\beta)$ equals the inertial group of $E(\Sigma^{q})$. The above theorem together with the latter will give us the following.

THEOREM. Let E be the total space of a p-sphere bundle over a q_{-} sphere then the diffeomorphism classes of (p+q)-manifolds that are homeomorphic to E are in one-to-one correspondence with the group

2. CLASSIFICATION THEOREM

In this section, we will prove the classification theorem for any manifold M^n homeomorphic to E. We will apply the obstruction theory to smoothing of manifolds developed by Munkres in [8]. Since p+q \ge 6 and 2 \le p < q then E is simply-connected and the homology of E has no 2-torsion, hence the "Hauptvermutung" of D. Sullivan [9] applies and this means that piecewise linear homeomorphism can be replaced by homeomorphism, we shall not distinguish the two.

DEFINITION. Let M and N be smooth closed n-manifolds and L a closed subset of M of dimension less than n. Let $f : M \rightarrow N$ be a homeomorphism such that for each simplex $_{Y}$ of L, $\overline{_{Y}}$ and $f(\overline{_{Y}})$ are contained in coordinate systems under which they are flat. f is said to be a diffeomorphism modulo L if f|(M-L) is a diffeomorphism and each simplex $_{Y}$ of L has a neighborhood V such that f is smooth on V-L near $_{Y}$. By [8, Theorem 2.8], if M and N are homeomorphic then there is a diffeomorphism modulo (n-1)-skeleton of M. If $f : M \rightarrow N$ is a diffeomorphism modulo m-skeleton m < n then the obstruction to deforming f to a diffeomorphism modulo (m-1)-skeleton g : $M \rightarrow N$ is an element $\lambda(f) \in H_m(M, r^{n-m})$ where r^{n-m} is a group of diffeomorphism of S^{n-m-1} modulo those that extend to diffeomorphisms of D^{n-m} . g is called the smoothing of f. If $\lambda(f) = 0$ then by [8, §4] smoothing g exist.

THEOREM 2.1. If M is a smooth n-manifold homeomorphic to E where E denotes the total space of a p-sphere bundle over a q-sphere, $2 \le p < q$ and n = p + q then there exist homotopy spheres z^{q} and z^{n} such that M is diffeomorphic to $E(z^{q}) \# z^{n}$ where $E(z^{q})$ denotes the total space of a p-sphere bundle over the homotopy q-sphere z^{q} .

PROOF. E is the total space of a p-sphere bundle over a q-sphere with characteristic class [b] $\epsilon \pi_{q-1}SO(p+1)$ then E = D^q × S^p $\bigcup_{f_b} D^q \times S^p$ where $f_b : S^{q-1} \times S^p \to S^{q-1} \times S^p$ is a diffeomorphism defined by $f_b(x,y) = (x,b(x)\cdot y), (x,y) \epsilon S^{q-1} \times S^p$

Since M^n is homeomorphic to E where $n = p+q \ge 6 \ 2 \le p < q$, then M^n is simply connected and since $H_3(M,Z)$ has no 2-torsion, then "Hauptvermutung" of D. Sullivan [9] implies that there is a piecewise linear homeomorphism $h : M^n \rightarrow E$ which by [8, §5] is a diffeomorphism modulo (n-1)-skeleton. Since $H_i(M,Z) = 0$ for n-p+1 $\le i \le n-1$ then we can assume that h is a diffeomorphism modulo n-p = q skeleton. The obstruction to a diffeomorphism modulo q-1 skeleton is $\lambda(h) \ \varepsilon \ H_q(M,\Gamma^p) = \Gamma^p$. If $[\phi] = \lambda(h) \ \varepsilon \ \Gamma^p$ where $\phi : S^{p-1} \rightarrow S^{p-1}$ is a diffeomorphism that represents $\lambda(h)$ and let Σ^p denote the homotopy p-sphere where $\Sigma^p = D_1^p \ \bigcup \ D_2^p$. We define a map

$$j : S^p \rightarrow \Sigma^p$$
 where $S^p = D_1^p \bigcup_{id.} D_2^p$

such that

$$j(x) = \begin{cases} x & \text{if } x \in D_1^p \\ \\ x & \phi^{-1}(\frac{x}{|x|}) & \text{if } x \in D_2^p. \end{cases}$$

So j is an homeomorphism which is identity on D_1^p and the radial extension of ϕ^{-1} on D_2^p and so the first obstruction $\lambda(j)$ to deforming j to a diffeomorphism is $[\phi^{-1}] = -\lambda(h)$. We then define id × j : $D^q \times S^p \rightarrow D^q \times \Sigma^p$ where id is the identity, then id × j is a homeomorphism and it follows from [8, Def. 3.4] that the first obstruction $\lambda(id xj)$ to deforming id xj to a diffeomorphism is also $-\lambda(h)$. We can form a manifold E' by identifying two copies of $D^q \times \Sigma^p$ along their common boundaries $S^{q-1} \times \Sigma^p$ by the diffeomorphism $f_b : S^{q-1} \times \Sigma^p + S^{q-1} \times \Sigma^p$ where $f_b(x,y) = (x,b(x) \ y)$ and $[b] \in \pi_{q-1}SO(p+1)$. So E' = $D^q \times \Sigma^p \bigcup_{\substack{f_b}} D^q \times \Sigma^p$. We define a map $g : E = (D^q \times S^p)_1 \bigcup_{\substack{f_b}} (D^q \times S^p)_2 + (D^q \times \Sigma^p)_1 \bigcup_{\substack{f_b}} (D^q \times \Sigma^p)_2 = E'$ by $g(x,y) = id \times j(x,y)$ on both $(D^q \times \Sigma^p)_1$, and $(D^q \times S^p)_2$, the map looks like

$$E = (D^{q} \times S^{p})_{1} \bigcup_{f_{b}} (D^{q} \times S^{p})_{2} = (D^{q} \times S^{p})_{1} \bigcup_{f_{b}} S^{q-1} \times S^{p} \bigcup_{id} (D^{q} \times S^{p})_{2}$$

$$\downarrow_{g} = \downarrow_{id \times j} \qquad \downarrow_{idxj} \qquad \downarrow_{idxj} \qquad \downarrow_{idxj}$$

$$E' = (D^{q} \times \Sigma^{p})_{1} \bigcup_{f_{b}} (D^{q} \times \Sigma^{p})_{2} = (D^{q} \times \Sigma^{p})_{1} \bigcup_{f_{b}} S^{q-1} \times S^{p} \bigcup_{id} (D^{q} \times \Sigma^{p})_{2}$$

g is an homeomorphism and the first obstruction to a diffeomorphism is $\lambda(id xj) = -\lambda(h)$. It follows that the obstructions to smoothing the composition $g \cdot h : M \rightarrow E'$ is $\lambda(g \cdot h) = \lambda(g) + \lambda(h) = -\lambda(h) + \lambda(h) = 0$. It follows that g.h. : M + E' is a diffeomorphism modulo (q-1)-skeleton. However in [7, Remark 1] we showed that $D^{q} \times \Sigma^{p}$ is diffeomorphic to $D^{q} \times S^{p}$ if $p \le q + 2$ and so by our hypothesis p < q then it follows that $D^{q} \times \Sigma^{p}$ is diffeomorphic to $D^{q} \times S^{p}$. This implies that E and E' are diffeomorphic hence g' : $M \rightarrow E$ is a diffeomorphism modulo (q-1)-skeleton. Since H_i(M,Z) = 0 for p + 1 < i < q-1, there is no more obstruction to deforming g' to a diffeomorphism until we get to (p-1) skeleton. We can then assume that g' is a diffeomorphism modulo p-skeleton. The first obstruction to deforming g' to a diffeomorphism modulo (p-1)skeleton is $\lambda(g';) \in H_{D}(M,r^{q}) = r^{p}$. Let $[\phi] = \lambda(g') \in r^{q}$ where $\phi : S^{q-1} \to S^{q-1}$ is a diffeomorphism which represents $\lambda(g') \in \Gamma^q$. We define $(\phi \times id) : S^{q-1} \times S^p \to S^{q-1} \times S^p$ where $(\phi \times id)(x,y) = (\phi(x),y)$ and if $\beta = [b] \in \pi_{q-1}SO(p+1)$ we also define $f_b : S^{q-1} \times S^p$ + $S^{q-1} \times S^p$ where $f_b(x,y) = (x,b(x),y)$. We then have two orientation preserving diffeomorphisms of $S^{q-1} \times S^p$ unto itself which we can compose to get $(\phi \times id) \cdot f_b : S^{q-1} \times S^p \rightarrow S^{q-1} \times S^p$ $S^{q-1} \times S^p$ where $(\phi \times id) \cdot f_b(x,y) = (\phi(x), b(x) \cdot y)$. We then construct a manifold by attaching two copies of $D^{q} \times S^{p}$ along their common boundary $S^{q-1} \times S^{p}$ using the diffeomorphism $(\phi \times id) \cdot f_b$ to have $D_1^q \times S^p \bigcup_{(\phi \times id) \cdot f_b} D_2^q \times S^p$. Notice that this manifold is a p-sphere bundle over a homotopy q-sphere $\Sigma^q = D_1^q \bigcup_{A} D_2^q$ whose characteristic map is

 $\beta = [b] \in \pi_{q-1}SO(p+1). \text{ We define a map}$ $h : D^{q} \times S^{p} \bigcup_{f_{b}} D_{2}^{q} \times S^{p} + D_{1}^{q} \times S^{p} \bigcup_{(\phi \times id) + f_{b}} D_{2}^{q} \times S^{p}$ by $h(x,y) = \begin{cases} (x,y) & \text{if } (x,y) \in D_{1}^{q} \times S^{p} \\ (x \cdot \phi^{-1}(\frac{x}{|x|}), y) & \text{if } (x,y) \in D_{2}^{q} \times S^{p} \end{cases}$ Hence h is identity on $D_{1}^{q} \times S^{p}$ and a radial extension of ϕ^{-1} on D_{2}^{q} . It then

Hence h is identity on $D_1^q \times S^p$ and a radial extension of ϕ^{-1} on D_2^q . It then follows that h is an homeomorphism with the first obstruction to a diffeomorphism being $[\phi^{-1}] = -\lambda(g')$. Then by [8, 3.8] the first obstruction to deforming the composition $g' \circ h =$ $g : M + D_1^q \times S^p \bigcup_{(\phi \times id) \to f_b} D_2^q \times S^p$ into a diffeomorphism is $\lambda(g) = \lambda(g' \circ h) = \lambda(g') + \lambda(h)$ $= -\lambda(h) + \lambda(h) = 0$ and hence g is a diffeomorphism modulo (p-1)-skeleton. Since $H_1(M,Z) = 0$ for 0 < i < p then we can assume that g is a diffeomorphism modulo one point. Since $D_1^q \times S^p \bigcup_{(\phi \times id) \to f_b} D_2^q \times S^p$ is a p-sphere bundle over a homotopy q-sphere $(\phi \times id) \to f_b$ $\Sigma_1^q = D_2^q \cup D^q$ with characteristic map $[b] \in \pi_{q-1}SO(p+1)$, we shall denote it by $E(\Sigma^q)$. Since g is a diffeomorphism modulo one point then it is known that there is an homotopy n-sphere Σ^n such that M is diffeomorphic to $E(\Sigma^q) \# \Sigma^n$. Hence the proof.

3. INERTIAL GROUPS

Since by Theorem 2.1, every manifold homeomorphic to E is diffeomorphic to $E(\Sigma^{q}) \ \# \ \Sigma^{n}$ for some homotopy spheres Σ^{q} , Σ^{n} , classification of such manifolds reduces to classification of manifolds of the form $E(\Sigma^{q}) \ \# \ \Sigma^{n}$. To complete this classification, we then need to investigate what happens when we vary the homotopy spheres and in particular we need to investigate the Inertial group of $E(\Sigma^{q})$. We will investigate these in this section.

LEMMA 3.1. Let Σ_1^q and Σ_2^q be homotopy q-spheres such that $\Sigma_1^q = D_1^q \bigcup_{\phi_1} D_2^q$ i = 1, 2 then $E(\Sigma_1^q)$ is diffeomorphic to $E(\Sigma_2^q)$ if and only if $\Sigma_1^q \pm \Sigma_2^q \in H(q,p)$. PROOF. Suppose $E(\Sigma_1^q)$ is diffeomorphic to $E(\Sigma_2^q)$. This means that $D_1^q \times S^p \bigcup_{\substack{\phi_1 \times id} \to f_b} D_2 \times S^p$ is diffeomorphic to $D_1^q \times S^p \bigcup_{\substack{\phi_2 \times id} \to f_b} D_2^q \times S^p$ where $(\phi_1 \times id) \cdot f_b$ $\phi_i \times id : S^{q-1} \times S^p + S^{q-1} \times S^p$ is the diffeomorphism defined by $\phi_i(x,y) = (\phi_i(x),y)$ and $f_b : S^{q-1} \times S^p + S^{q-1} \times S^p$ is defined by $f_b(x,y) = (x,b(x)\cdot y)$ where $[b] = \beta \in \pi_{q-1}SO(p+1)$ is the characteristic map of the bundle. The manifold $E(\Sigma_2^q)$ can be regarded as the boundary of the (p+1)-disc bundle over Σ_2 which is denoted by $D_1^q \times D^{p+1} \bigcup_{(\phi_2 \times id) \cdot f_b} D_2^q \times D^{p+1} = D(\Sigma_2^q)$. So if $E(\Sigma_1^q)$ is diffeomorphic to $E(\Sigma_2)$ then since Σ_1^q can be embedded in E(Σ_1^q) it follows that Σ_1^q embedds in E(Σ_2^q). But Σ_2^q naturally embedds in $E(\Sigma_2^q)$ and so we have Σ_1^q and Σ_2^q sitting in $E(\Sigma_2^q)$, if we translate Σ_1^q away from Σ_2^q we can run a tube between them to obtain an embedding Σ_1^q # $(-\Sigma_2^q) \rightarrow E(\Sigma_2^q)$ so that the embedding is homotopically trivial and so by the engulfing result of [10, chapter 7] it means that $\Sigma_1^q \# (-\Sigma_2^q)$ can be embedded in the interior of a (p+q+1)-disc in $E(\Sigma_2^q)$ and by [11, 3.5] the embedding is isotopic to a nuclear embedding into the interior of $S^{q} \times D^{p+1}$. However the embedding $\Sigma_{1}^{q} \# (-\Sigma_{2}^{q}) \rightarrow S^{q} \times D^{p+1}$ is an homotopy equivalence, it then follows by Smale's theorem [12, Theorem 4.1] that Σ_1^q # $(-\Sigma_2^q) \times D^{p+1}$ is diffeomorphic to $S^q \times D^{p+1}$ and so it follows that $\Sigma_1^q \# (-\Sigma_2^q) \times S^p$ is diffeomorphic to $S^q \times S^p$ hence $\Sigma_1^q \# (-\Sigma_2^q) \in H(q,p)$. Conversely suppose $\Sigma_1^q \# (-\Sigma_2^q) \in H(q,p)$ then this implies $(\Sigma_{1,}^{q} \# (-\Sigma_{2}^{q})) \times S^{p}$ is diffeomorphic to $S^{q} \times S^{p}$. Since $S^{q} \times S^{p}$ embedds in R^{p+q+1} with trivial normal bundle then it follows that $\Sigma_1^q \# (-\Sigma_2^q)$ embedds in \mathbb{R}^{p+q+1} with trivial normal bundle. This shows that each Σ^{q}_{i} for i = 1, 2 embedds in R $^{p+q+1}$ with trivial normal bundle and by [11, §3.5] the embedding is isotopic to an embedding of Σ_i^q into the interior of S^q × D^{p+1}. However for i = 1, 2 the embedding Σ_i^q + S^q × D^{p+1} is an homotopy equivalence hence it follows from [12, Theorem 4.1] that Σ_i^q × D^{p+1} is diffeomorphic to $S^q \times D^{p+1}$ which implies that $\Sigma_1^q \times D^{p+1}$ is diffeomorphic to $\Sigma_2^q \times D^{p+1}$. Now since $\Sigma_i^q = D_1^q \cup D_2^q$ where $\phi_i : S^{q-1} + S^{q-1}$ represents $\Sigma_i^q \in \Gamma^q$ i = 1, 2, then we can write $\Sigma_i^q \times D^{p+1} \stackrel{\phi_i}{=} D_1^q \times D^{p+1} \bigcup_{\phi_i \times id} D_1^q \times D^{p+1}$ where we identify two copies of $D^q \times D^{p+1}$ along $S^{q-1} \times D^{p+1}$ by the diffeomorphism $\phi_i \times id : S^{q-1} \times D^{p+1} \rightarrow S^{1-1} \times D^{p+1}$ defined by $(\phi_i \times id)(x,y) = (\phi_i(x),y)$ where $(x,y) \in S^{q-1} \times D^{p+1}$. So $\Sigma_1^q \times D^{p+1}$ is diffeomorphic to $\Sigma_2^q \times D^{p+1}$ implies $D_1^q \times D^{p+1} \bigcup_{\phi_1 \times id} D_2^q \times D^{p+1}$ is diffeomorphic to $D_1^q \times D^{p+1} \bigcup_{\phi_2 \times id} D_2^q \times D^{p+1}$. Now consider the manifold $D(S^q) = D^q_+ \times D^{p+1} \bigcup_{r=1}^{q} D^q_- \times D^{p+1}$ which is a (p+1)-disc bundle over a q-sphere with characteristic map [b] $\varepsilon^{b} \pi_{q-1}$ SO(p+1). We then form the quotient space

$$D(S^{q}) \bigcup \Sigma^{q}{}_{1} \times D^{p+1} = (D^{q}{}_{\underline{x}}D^{p+1} \bigcup_{f_{b}} \underline{p}^{q} \times D^{p+1}) \bigcup (D^{q}{}_{1} \times D^{p+1} \bigcup_{\phi_{1} \times id} D^{q}{}_{2} \times D^{p+1})$$

by identifying $D_{-}^{q} \times D^{p+1} \subset D(S^{q})$ and $D_{1}^{q} \times D^{p+1} \subset \Sigma_{1}^{q} \times D^{p+1}$ by the relation $(x,y) = (x,y)(x \in D_{-}^{q} = D_{1}^{q}, y \in D^{p+1})$. The manifold $D(S^{q}) \cup \Sigma_{2}^{q} \times D^{p+1}$ is similarly constructed. Since $\Sigma_{1}^{q} \times D^{p+1}$ is diffeomorphic to $\Sigma_{2}^{q} \times D^{p+1}$. Let d : $\Sigma_{1}^{q} \times D^{p+1} \to \Sigma_{2}^{q} \times D^{p+1}$ be the diffeomorphism and since any diffeomorphism fixes a disc, we can assume that d is identity on the disc $D^{p+q+1} = D_1^q \times D^{p+1}$, then we can define a diffeomorphism.

$$g : D(S^q) \bigcup \Sigma_1^q \times D^{p+1} \neq D(S^q) \bigcup \Sigma_2^q \times D^{p+1}$$

where

$$g(x) = \begin{cases} d(x) & \text{for } x \in \Sigma_1^q \times D^{p+1} \\ \\ \\ x & \text{for } x \in D(S^q). \end{cases}$$

This means that g = d on $\Sigma_1^q \times D^{p+1}$ and identity on $D(S^q)$. g is well defined because d is identity on the disc connecting $D(S^q)$ and $\Sigma_1^q \times D^{p+1}$ and g is a diffeomorphism. The manifold $D(S^q) \cup \Sigma_1^q \times D^{p+1}$ can be clearly seen as follows. Let $(\phi_i \times id) \cdot f_b : S^{q-1} \times D^{p+1} \to S^{q-1} \times D^{p+1}$ be the diffeomorphism defined by $((\phi_i \times id) \cdot f_b)(x,y) = (\phi_i(x), b(x) \cdot y), (x,y) \in S^{q-1} \times D^{p+1}$ then attaching two manifolds $D_+^q \times D^{p+1}$ and $D_-^q \times D^{p+1}$ by the diffeomorphism $(\phi_i \ id) \cdot f_b$ we have $D_+^q \times D^{p+1} \cup D_+^q \times D^{p+1}$ we get a (p+1)-disc $(\phi_i \times id) \cdot f_b$ bundle over the homotopy q-sphere $\Sigma^q_{i} = D_1^q \cup D_2^q$ i = 1, 2. However, from the way ϕ_i $D(S^q) \cup \Sigma_1^q \times D^{p+1}$ is constructed it is easily seen that $D(S^q) \cup \Sigma_1^q \times D^{p+1} = D_+^q \times D_+^{p+1} = D(\Sigma_1^q)$ hence g is the diffeomorphism of $D(\Sigma_1^q)$ onto $D(\Sigma_2^q)$ then it follows that $\partial(D(\Sigma_1^q)) = E(\Sigma_1^q)$ is diffeomorphic to $\partial(\Sigma_2^q) = E(\Sigma_2^2)$.

REMARK 1. This theorem implies that $E(\Sigma_1^q)$ is diffeomorphic to $E(\Sigma_2^q)$ if and only if Σ_1^q and Σ_2^q are equivalent in the quotient group $\theta^q/_{H(q,p)}$.

To complete this classification, we need to determine the inertial group of $E(\Sigma^q)$. The inertial group .(M) of an oriented closed smooth n-dimensional manifold M is defined to be the subgroup of θ^n consisting of those homotopy n-spheres Σ^n such that M # Σ^n diffeomorphic to M.

Let E_{β} represent the total space of a p-sphere bundle over a real q-sphere with characteristic class $\beta \in \pi_{q-1}SO(p+1)$. In [13] we defined a map $G_{\beta} : \pi_pSO(q) \neq \theta^{p+n}$ and showed that the image of this map equals the inertial group of E_{β} where p < q and E_{β} has no cross-section. We shall similarly define a map $G_{\phi \cdot \beta} : \pi_pSO(q) \neq \theta^{p+q}$ and show that the image of this map equals the inertial group of $E(\Sigma^q)$ where $E(\Sigma^q)$ is the total space of p-sphere bundle over a homotopy sphere $\Sigma^q = D_1^q \bigcup_{\phi} D_2^q$. Let $\alpha \in \pi_pSO(q)$ we define $G_{\phi \cdot \beta}(\alpha) = S^{q-1} \times D^{p+1} \int_{a^{-1}} (\phi \times id) \cdot f_b D^q \times S^p$ where $[a] = \alpha$ and $[b] = \beta \in \pi_{q-1}SO(p+1)$ and

 $f_{a-1}(\phi \times id) \cdot f_b : S^{q-1} \times S^p \to S^{q-1} \times S^p$ is a diffeomorphism defined by $f_{a-1}(\phi \times id) \cdot f_b(x,y) = (a^{-1}(b(x) \cdot y) \cdot (x), b(x) \cdot y)$. One can easily show that $G_{\phi \cdot \beta}$ is well-defined and that its image is an homotopy (p+q)-sphere as similarly shown in [13].

LEMMA 3.2. Let $E(\Sigma^{q})$ denote the total space of a p-sphere bundle over an homotopy q-sphere $\Sigma^{q} = D_{1}^{q} = D_{1}^{q} \bigcup D_{2}^{q}$ with characteristic class $\beta \in \pi_{q-1}SO(p+1)$ then $G_{\phi \cdot \beta}\pi_{p}(SO(q)) = I(E(\Sigma^{q}))^{\phi}$.

PROOF. If $\Sigma^{p+q} \in I(E(\Sigma^q))$ then this means there is a diffeomorphism $d : E(\Sigma^q) \# \Sigma^{p+q} \rightarrow E(\Sigma^q)$, that is,

d :
$$(D_1^q \times S^p \bigcup_{(\phi \times id) \cdot f_b} D_2^q \times S^p) # \Sigma^{p+q} + D_1^q \times S^p \bigcup_{(\phi \times id) \cdot f_b} D_2 \times S^p$$

since p < q then $\pi_p(E(z^q))$ is infinitely cyclic and $d(o \times S^q)$ represents a generator and so is homotopic to the inclusion $0 \times S^p + E(z^q)$. By Haefliger's theorem [14], $d|0 \times S^p$ and the inclusion $0 \times S^p + E(z^q)$ are isotopic and by isotopy extension theorem and tubular neighborhood theorem, d is isotopic to a map which we shall again denote by d such that $d|D^q \times S^p = D^q \times S^p$ where $d(x,y) = (a(y) \cdot x, y)$ for $[a] \in \pi_p SO(q)$ and $(x,y) \in D^q$ $\times S^p$. We now remove $D^q \times S^p$ from $E(z^q) \# z^{p+q} = (D^q \times S^p \bigcup D^q \times S^p) \# z^{p+q}$ by $(\phi \times id) \cdot f_b$ surgery away from the connected sum and replace it with $S^{q-1} \times D^{p+1}$. After this operation on the summand $E(z^q)$ of the connected sum, we have the manifold $S^{q-1} \times D^{p+1}$ $\bigcup D^q \times S^p$. Since the diffeomorphism $(\phi \times id) \cdot f_b : S^{q-1} \times S^p + S^{q-1} \times S^p$ extend to $(\phi \times id) \cdot f_b$

diffeomorphic to $S^{q-1} \times D^{p+1} \cup D^q \times S^p$, the diffeomorphism g is defined thus id

$$\begin{array}{c|c} S^{q-1} \times D^{p+1} & \bigcup D^{q} \times S^{p} \\ id & \downarrow \\ (\phi \times id) \cdot f_{b} & \downarrow & \downarrow \\ S^{q-1} \times D^{p+1} & \bigcup D^{q} \times S^{p} \\ (\phi \times id) \cdot f_{b} \end{array}$$

where

$$g(x,y) = \begin{cases} (x,y) & \text{if } (x,y) \in D^{q} \times S^{p} \\ ((\phi \times id) \cdot f_{b})(x,y) & \text{if } (x,y) \in S^{q-1} \times D^{p+1}. \end{cases}$$

However, by [7, Lemma 2.1.2], $S^{q-1} \times D^{p+1} \bigcup_{id} D^q \times S^p$ is diffeomorphic to the standard (p+q)-sphere $S^{p+\dot{q}}$, hence after this surgery $E(\Sigma^q)$ is reduced to S^{p+q} and so $E(\Sigma^q) \# \Sigma^{p+q}$ is reduced to $S^{p+q} \neq \Sigma^{p+q} = \Sigma^{p+q} = \Sigma^{p+q}$.

We perform the corresponding modification (under d) on $\mathbb{E}(\Sigma^{q})$ to remove the p-sphere $0 \times S^{p}$ with product structure $d(D_{1}^{q} \times S^{p})$ in $\mathbb{E}(\Sigma^{q})$. From this modification we obtain a manifold $S^{q-1} \times D^{p+1} \bigcup D^{q} \times S^{p}$ where $\psi = (d^{-1}|S^{q-1} \times S^{p}) \cdot (\phi \times id) \cdot f_{b}$ and this is diffeomorphic to Σ^{p+q} because of the way we performed the surgery using d. However, this manifold $S^{q-1} \times D^{p+1} \bigcup D^{q} \times S^{p} = G_{\phi \cdot \beta}(\alpha)$ by the definition of $G_{\phi \cdot \beta}$, thus there ψ exists an element $\alpha \in \pi_{p}SO(q)$ (namely) $d|(D_{1}^{q} \times S^{p})$ which gives $\alpha \in \pi_{p}SO(q)$ such that Σ^{p+q} $= G_{\phi \cdot \beta}(\alpha)$ and so $\Sigma^{p+q} \in G_{\phi \cdot \beta}(\pi_{p}SO(q))$, hence $1(\mathbb{E}(\Sigma^{q})) \subset G_{\phi \cdot \beta}(\pi_{p}SO(q))$. Conversely suppose $\Sigma^{p+q} \in G_{\phi \cdot \beta}(\pi_{p}SO(q))$ then for some $\alpha \in \pi_{p}SO(q)$, $\Sigma^{p+q} = S^{q-1} \times D^{p+1} \bigcup$ $f_{a^{-1}} \cdot (\phi \times id) \cdot f_{b}$ $D^{q} \times S^{p}$ where ϕ is a diffeomorphism of S^{q-1} onto itself representing $\Sigma^{q} = D_{1}^{q} \bigcup D_{2}^{q}$ and $f_{a^{-1}}$ and f_{b} are as defined earlier. Notice that $G_{\phi \cdot \beta}(\alpha)$ is thus the obstruction to the construction of a diffeomorphism $S^{p+q} + \Sigma^{p+q}$. To construct a diffeomorphism from $S^{p+q} + \Sigma^{p+q}$.

$$p^{+q}$$
, we map $S^{q-1} \times D^{p+1} \subset S^{p+q}$ to itself using ($\phi \times id$). f_{h} to have

$$S^{p+q} = S^{q-1} \times D^{p+1} \cup D^{q} \times S^{p}$$

$$(\phi \times id) \cdot f_{b} \downarrow$$

$$\Sigma^{p+q} = S^{q-1} \times D^{p+1} \cup D^{q} \times S^{p}$$

$$f_{a1} \cdot (\phi \times id) \cdot f_{b}$$

and try to extend it to $D^q \times S^p$. On the boundary $S^{q-1} \times S^p$ of $D^q \times S^p$, the map is $f_{b-1} \cdot (\phi^{-1} \times id) \cdot f_a \cdot (\phi \times id) \cdot f_b$. So this means that $\Sigma^{p+q} = G_{\phi \cdot \beta}(\alpha)$ is the obstruction to extending the diffeomorphism $f_{b-1} \cdot (\phi^{-1} \times id) \cdot f_a \cdot (\phi \times id) \cdot f_b$: $S^{q-1} \times S^p + S^{q-1} \times S^p$ to a

diffeomorphism of $D^q \times S^p$ onto itself. We can then define a map $E(\Sigma^p) \to E(\Sigma^q)$ using the diffeomorphism $f_a : D_1^q \times S^p \to D_1^q \times S^p$ where $f_a(x,y) = (a(y) \cdot x,y) (x,y) \in D_1^q \times S^p$ we then have

$$E(\Sigma^{q}) = D_{1}^{q} \times S^{p} \qquad \bigcup \qquad D_{2}^{q} \times S^{p}$$

$$\downarrow f_{a}$$

$$E(\Sigma^{q}) = D_{1}^{q} \times S^{p} \qquad \bigcup \qquad D_{2}^{q} \times S^{p}$$

On the boundary $S^{q-1} \times S^p$ of $D_1^q \times S^p$, this map is $f_{b^{-1}} \cdot (\phi^{-1} \times id) \cdot f_a \cdot (\phi \times id) \cdot f_b$ and the obstruction to extending this to a diffeomorphism of $E(\Sigma^q)$ onto itself is the

obstruction to extending the map $f_{b^{-1}} \cdot (\phi^{-1} \times id) \cdot f_a \cdot (\phi \times id) \cdot f_b$ to the diffeomorphism of $D_2^q \times S^p$ onto itself which is Σ^{p+q} . It then follows that $E(\Sigma^q) \neq E(\Sigma^q) \# \Sigma^{p+q}$ is a diffeomorphism and so $\Sigma^{p+q} \in I(E(\Sigma^q))$ hence

$$E(E(\Sigma^{q})) = G_{\phi \circ \beta} \pi_{p}(SO(q))$$

REMARK 2. We note that if $p = 2, 4, 5, 6 \pmod{8}$ and p < q-1 then $\pi_p SO(q) = 0$ and so the image of G is trivial and hence in this particular case, the inertial group of $E(z^q)$ is trivial and this coincides with the result of [4, Proposition 1].

REMARK 3. By [15], intertial group I(M) of a smooth manifold M is a diffeotopy invariant of M. So if $2p \ge q+1$ then we can deduce that the inertial group $I(E(z^q))$ of a p-sphere bundle over an homotopy q-sphere z^q is equal to the inertial group $I(E_\beta)$ of a p-sphere bundle over the standard q-sphere, where $\beta \in \pi_{q-1}SO(p+1)$ classifies the associated disc bundle. Let $D(z^q)$ be the associated (p+1)-disc bundle over the homotopy q-sphere where $E(z^q)$ is the boundary of $D(z^q)$. z^q has the homotopy type of $D(z^q)$ and z^q has the homotopy type of S^q , it follows that S^q has the homotopy type of $D(z^q)$. Since $2p \ge q+1$ then it follows that $2(p+q+1) \ge 3q + 3$ and since p + q > 5 and $p \ge 3$ then $D(z^q)$ and $E(z^q)$ are simply connected and from [12: Theorem 4.4], it follows that $D(z^q)$ is diffeomorphic to a (p+1)-disc bundle $D(S^q)$ over the q-sphere S^q hence the boundary $\partial D(z^q) = E(z^q)$ of $D(z^q)$ is diffeomorphic to the boundary $\partial D(S^q) = E_\beta$ of $D(S^q)$. It then follows by [15] that $I(E(z^q)) = I(E_\beta)$. This means that the inertial group of S_β in [13] coincides with Lemma 3.2.

Combination of Lemmas 3.1 and 3.2 give the following.

THEOREM 3.3. Let E be the total space of a p-sphere bundle over a q-sphere with characteristic map $\beta \in \pi_{q-1}SO(p+1)$ then the diffeomorphism classes of p+q-manifolds that are homeomorphic to E are in one-to-one correspondence with the group

$$\frac{\theta^{q}}{H(q,p)} \times \frac{\theta^{n}}{\text{Image } G_{R}}$$

where $p+q = n \ge 6$ and p < q.

REFERENCES

- 1. De Sapio, R., Manifolds Homeomorphic to Sphere Bundles Over Spheres. <u>Bull.</u> <u>American Math. Soc.</u> <u>75</u> (1969), 59-63.
- Munkres, J., Concordance of Differentiable Structures Two Approaches. <u>Michigan</u> <u>Math. J.</u> <u>14</u> (1967), 183-191.

- 3. Schultz, R., Smoothing of Sphere Bundles of Spheres in Stable Range. <u>Inventiones</u> <u>Math 9</u> (1969), 81-88.
- De Sapio, R., Differential Structures on a Product of Spheres. <u>Comm. Math. Helv.</u> Vol. <u>44</u>, <u>1</u> (1969), 61-69.
- 5. Kawakubo, K., Smooth Structures on $S^{p} \times S^{q}$. Proc. Japan Acad. 45 (1969), 215-218.
- 6. Schultz, R., Smooth Structures on $S^{P} \times S^{q}$. <u>Annals of Math. 90</u> (1969), 187-198.
- Ajala, S. O., Differentiable Structures on Product of Spheres. <u>Houston Journal of</u> <u>Math.</u>, Vol. <u>10</u>, <u>1</u> (1984), 1-14.
- Munkres, J., Obstruction to Smoothing of Piecewise-Differentiable Homeomorphisms. <u>Annals of Math.</u> Vol. <u>72</u>, <u>3</u> (1960), 521-554.
- 9. Sullivan, D., On Hauptvanmutung for Manifolds. <u>Bull. Amer. Math. Soc.</u> 73 (1967), 598-600.
- Zeeman, E., Seminar on Combinatorial Topology (mimeogrpahed notes), <u>Inst. Hautes</u> <u>Etudes</u>, Sci. Publ. Math. (1965).
- Levine, J., Classification of Differentiable Knots. <u>Annals of Math.</u> <u>82</u> (1965), 15-50.
- 12. Smale, S., On the Structure of Manifolds. Amer. Math. J. 84 (1962), 387-399.
- Ajala, S. O., Inertial Group of p-sphere Bundle over a q-sphere without Cross-section. <u>Nigerian Journal of Science</u> Vol. <u>18</u>, (1984), to appear.
- Haefliger, A., Plongements Differentiables de Varietes dans Varietes, <u>Comm. Math.</u> <u>Helv.</u> <u>36</u> (1961), 47-81.
- 15. Kawakubo, K., Inertial Group of Homology Tori. <u>J. Math. Soc. Japan</u> Vol. <u>21</u>, <u>1</u> (1969).
- Hsiang, W. C., Leving, J., and Szczarba, R. H., On the Normal Bundle of a Homotopy Sphere Embedded in Euclidean Space. Topology 3 (1965), 173-181.