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ABSTRACT. A formula of inversion is established for an integral transform whose kernel

is the Bessel function J (kr) where r varies over the finite interval (0,a) and the
u

order u is taken to be the eigenvalue parameter. qnen this parameter is large the
u

Bessel function behaves for varying r like the power function r and by relating the

5essel functions to their corresponding power functions the proof of the inversion

iormula can be reduced to one depending on the Mellin inversion theorem.
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!. INTRODUCTION

This paper considers the problem of inverting the integral transform defined by

the equation
[a )drF(u) J (kr)f(r (i.i)
0

u r

whe’e k, a are positive constants and u is a complex parameter. This transform, which

does not appear to have been used previously, is useful to remove the group of terms

(r2 + rf + k2r2f) that occurs when the space form of tNe wave equation is expressed
rr r

in polar coordinates and r varies over the finite interval 0 r a. The transform is

related to another transform defined on the same finite interval by the equation

Fl(U)--" [Ju(kr)u(ka)- Ju(ka)u(kr)]f(r)drr (1.2)

This transform was introduced in [1] where a formula of inversion for it was stated.

ttowever because of the behaviour of the Bessel function terms in the vicinity of the

origin the transform (1.2) is more complicated than that defined by (1.1) and exists for

a smaller class of functions f(r). For the transform (1.2) to exist the function f(r)

.st tend to zero as r O, an unnecessariIy rest:rietive condition. Also, if the trans-

form (1.2) does exist for a certain class of functions it may be expected to do so in

some strip IRe(u)! y of the complex u-plane, in which case, for the same cIass of

functions, the transform (1.1) will exist in the haIf plane Re(u)>-T containing the

strip. To see this we may suppose that f(r) is continuous for 0 < r .< a and that

f(r) O(rb) as r 0, then since J (kr)’(kr/2)u/"(u+l), it foIIows from (1.1) that
u

F(u) will exist in the haif plane Re(u)>-b. ttowever, since

Y (x) [J (x)cosu J (x)]cosecu (1.3)
U U --U

then
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a

Fl(U) cosecu- j0[J (kr)J (ka) J (ka)J (kr)]f(ru -u u -u r

cosecuz[F(u)J (ka) F(-u)J (ka)]
--U U

(1.4)

so that F1(u) will exist only if F(u) and F(-u) possess a common domain of definition.

I. F(u) exists only for Re(u)>-b and F(-u) for Re(u)<b, where b < 0, no such domain

exists. However if b 0, F(u) and F(-u) will exist in overlapping half planes and

will exist in the common strip that is for :Re(u) <b. If f(r)%clrbF1(u) as r0,
where c is a constant and b .< 0, then Fl(U) fails to exist for any value of u.

In this paper a formula of inversion is established for the integral transform

defined by (1.1). Before stating this formula it is necessary to summarize certain

results relating to the zeros u of the function 3 (ka), regarded as a function of then u
order u when the quantity ka is supposed prescribed and positive. It is known, [2],[3]
that there is an infinite number of such zeros, all real and simple, and that they all

lie in the interval < u =< ka. The large u-zeros are asymptotic to the negative

iLtegers and, depending on the value of ka, only a finite number, or none, of the zeros

is DOSitive. An extensive table of values of the zeros of J (ka), regarded as a

function of u, has been compiled in [4] where the first ten such zeros are calculated
for a large number of values of ka ranging from 10

-3
to 10

-6

The following theorem may now be stated:

THEOREM. Suppose that f(r) is continuous for 0 < r .< a and that f(r) O(rb) as

r 0, then the integral transform defined by (i.i) possesses the inverse

u(u,r)F(u)duf(r) Je J (ka)
u

where 0 < r < a,

(i .5)

(u,r) J (kr)Y (ka)- J (ka)Y (kr) (1.6)
U U U U

and the path of integration L in the complex u-plane is the line Re(u) c positioned

so that c > -b and so that all of the zeros of J (ka) lie to the left of it.
u

2, THE INTEGRAL THEOREM.

The formula (1.5) can be established by following the method of proof adopted in

[5] to derive a related formula in which the kernel of the transform involved the

Neumann function Y (kr). This method stems from the observation that when u is largeu
the function J (x) behaves for varying x like the power function (x/2)u/F(u+l).

u
By relating the Bessel functions to their corresponding power functions we may evade

invoking many special properties of these functions and reduce the proof of (1.5) to

one depending on the Mellin inversion theorem.

Let f O(rb) as r 0 where b is real and let L(R) denote the straight line in

the u-plane drawn from the point c-iR to the point c+iR, where c > -b. The first step

in the proof of (1.5) is to form the equation:

J (ka) ’J (ka) Ju(kt)f(t)-- (2.1)

L(R) u L(R) u

This equation follows at once by substituting the expression (I.i) for the function

F(u) p.resent on the left hand side of equation (2.1). The next step is to extract the

dominant contribution from the combination of Bessel functions appearing on the right

hand side of (2.1) when the variable u is large. With this aim in view we appeal to
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the as.vmptotic formula

2
J (x) (1/2x)u x
u ’F (u+i’) [I 4"(U+I) + O(u ") (2.2)

This formula applies whenever u is large compared to x and bounded away from the neg-

ative integers. It follows from (2.2) that

J (kt)/J (ka) (t/a)U[l k2(t2-a2)/4u + 0(u-2)]
U U

(2.3)

The behaviour of the function (u,r) for large values of u can be obtained in a

similar fashion if the Y type functions present in (1.6) are first eliminated in
U

favour of the J type functions by means of the identity (1.3) from which it follows
u

in turn that

(u,r)--- [J (kr)J (ka)- J (ka)J (kr)]cosecu-
U --U U --U

(2.4)

k
2 2_a2(r(a/r)U (r/a)U] + 2
4nu

[(r/a)U + (a/r)U]

-3 iRe(u)
(2.5)+ 0[u (a/r)

after estimating the Bessel functions occurring in (2.4) by means of (2.2) and using

the identity F(l+u)F(l-u) ur. cosecu=. It follows on multiplying (2.3) and (2.5)

that

u (u,r)J (kt)
U

J (ka)
U

2 u(t/r) u (rt/a) + h(u,r,t) (2.6)

where, for large values of u bounded away from the negative integers,

k
2 2_t2 2 2_2 -2 u

h(u,r,t)
(r )(t/r)U k (r2+t a2)(rt/a2) u + 0[u (t/r) (2 7)
4u

+ 4u

The equation (2.6) is the desired asymptotic formula that determines the behaviour of

the integrand present in (2.1) when u is large. The dominant terms in this expression

are the power functions (t/r) u and (rt/a2) u, the function h(u,r,t) remaining being
-i

clearly 0[u (t/r)U].
The next step in the proof is to insert the expression (2.6) into the integral

on the right hand side of (2.1). This yields the equation

u (u,r)F(u)du r-Udu f (t) tU-ldt (2 8)’(’ka)
L(R) u L(R)

__l /r)-Udu f(t)tU-ldt + 1 du f(t)h(u r t)t

L(R) L(R)

dt

Now by the Mellin inversion theorem, [6],

I I {2if(r), 0 r < a
lim r-Udu tu-lf (t)dt
R+= L(R) 0 r > a

It follows on letting R-= in (2.8) that the first term on the right hand side of that
2

equation tends to 2if(r) whilst the second term tends to zero, since a /r >a therein.
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Therefore, on proceeding to the limit, equation (2.8) yields the formula

lira I u (u, r)F(u)du

R-= J (ka)
L(R) u

[a )dr2if(r) + lim f(t h(u r t)du
R.. jo -f-

L(R)

(2.9)

after interchanging the order of integration in the final term on the right hand side

of (2.8). To justify the reversal of the order of integration in this term it is

sufficient to verify that the repeated integral in question is, for finite values of

R, absolutely convergent. With this aim in view we write u + i and utilize the

following bound on the function J (kt):
u

IJ (kt) G( )(kt)
u (2.10)

The derivation of this bound is sketched in the appendix to this paper. The function

G(,) appearing in the bound (2.10) is, for given , a continuous function of . On

using (2.10) in conjunction with (2.6)we see that

u (u,r) )alh(u,r,t),=<[l + (r/a) 2 + j. (ki) IG(a,S)(kr ](t/r) s g(,8,r)t
u

w,here g(,B,r) varies continuously for u on the path L(R). It follows that, on the

path L(R) where Re(u) c,

a fIf(t)h(u,r,t)It-ldt =< g(c,,r) If(t) itc-I dt
0

The t-integral here exists since, by hypothesis, f 0(tb) and b + c > 0. Since the

path L(R) is of finite extent it follows that the last repeated integral on the right

hand side of (2.8) does exist when the integrand is replaced by its modulus. This

establishes the truth of (2.9) and it remains to prove that

lim f(t)t-ldt h(u,r,t)du 0 (2.11)

This result will be established with the aid of Cauchyts theorem which is first used

to prove that

[h(u,r,t) h(u,t,r)]du 0(R-I

L(R)

(2.12)

as R uniformly for all values of t such that r t a where r > 0.

To verify (2.12) it is first noted that the Bessel functions are entire functions

of the complex variable u so that the function h(u,r,t) defined by (2.6) is an analytic

function of u except for simple poles at the zeros of J (ka), regarded as a function
u

of u. Furthermore it follows from (2.6) in conjunction with (1.6), (2.4) and (2.5)

in turn, that

h(u,r,t) -h(u,t,r) =u[J (kr)Y (kt) -J (kt)Y (kr)] +(r/t) u- (t/r) u (2.13)
u u u u

h(u,r,t)-h(u,t,r) =-u[J (kr)J (kt) -J (kt)J (kr)]cosecu
U --U U --U

+ (r/t)u- (t/r)U
-1 u )uh(u,r,t) -h(u,t,r) =O[u {(r/t) +(t/r }]

(2.1)

(2.15)



INTEGRAL TRANSFORM 639

It is seen from (2.13) that the function hu,r,t) h(u,t,r) is an entire function of

u and from (2.14) that the same function is an odd function of u, since the same is

true of the cross product of Bessel functions as well as of the remaining terms

(r/t) u (t/r) u.
If we now apply Cauchy’s theorem to the integral of h(u,r,t) h(u,t,r) around

the boundary of the rectangle whose corners are the points _+iR, c -+ iR we find, since

the contributions of the top and bottom sides are 0[R-l(r/t) c] + 0[R-l(t/r)C], that

I iR[h(u,r,t)-h(u,t,r)]du-- [h(u,r,t)-h(u,t,r)]du + 0[R-l(r/t) c]
L(R) -iR

+ 0jR-l(t/r) c]

0[R-l(r/t) c] + 0[R-l(t/r) c]

by virtue of the odd property of the function h(u,r,t) h(u,t,r). The result (2.12)

now follows, for t such that r < t < a, where r > 0.

It is now possible to return to the proof of (2.11). The t-integration present in

this equation is decomposed into the parts (0,r) and (r,a) and the result (2.12) used

to convert the contribution from the second such part. This leads to the equation

f(t)t- dt h(u,r,t)du f(t)t- dt h(u,r,t)du
0L(R) e(R)

h(u t r)du + 0(R-I)(t) t-ldt+
L(R)

(2.16)

We now show that both of the integrals taken along the path L(R) on the right hand side

of (2.16) are 0(R-) so that all three terms on the right hand side of this equation

tend to zero as R =. We consider the first such integral, that in which 0 < t < r.

By Cauchy’s theorem the path L(R) may be deformed onto the part C(R) of the circle

u c + Rei0 lying to the right of, and joining the end points of, L(R), since h(u,r,t)
is analytic in the region traversed. Since h 0[u-l(t/r) u] it follows, if 0 < t < r,

that

h(u,r,t)dul h(u,r,t)du < (t/r) c (t/r)RCS0d
L(R) C(R) -/2

(t/r)c

--< R log(r/t) (2.17)

Since this expression breaks down at the value t r, we decompose the t-interval (0,r)
into the parts (0,r- R-1/2) and (r R-1/2, r) and apply the bound (2.17) to the first- R-such part only. Since log(r/t) exceeds -log(l r R- > r- throughout this

part it follows that

r’(/r) c
<r_Rh(u,r,t)dul < for 0<t

L(R)

In the remaining interval (r R-, r) we still have h 0(u-I) and deforming L(R)

(2.18)
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onto C(R) as before we have

h(u,r,t)dul h(u,r,t)dul _<
L(R) C(R) -/2

It follows on adding the contributions from the stated parts that

f(t)t- dt h(u,r,t)du < r R-" If(t) ItC-ldt
0 L(R) 0

(2.19)

(2.20)

r
+ If(t) lt- dt

Both terms on the right hand side of the preceding inequality are 0(R-) which veri-

fies that the first of the repeated integrals on the right hand side of (2.16) vanish-

es as R =. The second repeated integral on the right hand side of (2.16), that for

which r<t<a,_ is treated in a similar fashion by dividing the interval into the parts

(r,r + R-) and (r + R-, a) On deforming the path as before and using the fact

that h(u,t,r) 0[u-I (r/t) u] we find the following inequality, analogous to (2 17)

(r/t) c
)ch(u,t,r) du < R-10g(t/r) -< 2r(r/t R-

L(R)

-1R-1/2for r+R-1/2 _< t _< a, since log(t/r) exceeds log (i r in the stated interval,
whilst in the remaining interval (r, r + R-l) we still have h(u,t,r) 0(u-I)
so that

(2.21)

I h(u,t,r) du _<
L(R)

(2.22)

It follows on adding the contributions from the two parts of the interval r < t < a

that

f(t)t-ldt h(u,t,r)dul
_

2rr If(t) It + r If(t) lt-ldt
L(R) r+R-1/2

r

Both terms on the right hand side of this equation are again 0(R-1/2) so that the second

repeated integral on the right hand side of (2.16) tends to zero as R . Thus (2.11)

is established and in consequence the form._la (2.9) reduces to the equation

f(r) =i f u(u’r)F(u)du’
J (ki)’’
u

L

(2.23)

where L denotes the line Re(u) c in the complex u-plane.

If f(r) does vanish as r 0 the formula (1.5) of the theorem may be restated as

the equation:

u(u,r)F(u) du
uJ (kr)Y (ka)F(u)

f(r)

Jl Ju(ka) + y" u u
’(’’/au) J 1(ka) 2.24

u
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,-here I denotes the imaginary axis of the complex u-plane and the summation is extend-

ed over the positive zeros u of the function J (ka), if any such zeros existn u
The formula (2.24) is obtained from (2.23) by deforming the path L in the latter

equation onto the imaginary axis and taking into account the residues at the poles of

the integrand, if any, in the region traversed. Io justify this procedure it is suffi-

cient to verify that the integrand appearing in (2.23) tends to zero as llm(u)I/ in

the strip 0 < Re(u) c and this requires a knowledge of the behaviour of the function

F(u) as llm(u) l in this strip. A suitable expression for F(u) valid when Ira(u) is

large can be obtained by using (2.2) which applies as u uniformly for any bounded

interval of values of x. On replacing x by kr and substituting the resulting expres-

sion for J (kr) into (i.I) we find thatu

(k/2)u laF(u) f(r) rU-ldr (2 25)r (u+l)

Since Re(u) is bounded in the stated strip it follows from (2.5) that (u,r) -O(u-I)
and on using (2.2) to estimate J (ka) and (2.25) to estimate F(u) we find that, foru
large values of Im(u), the modulus of the integrand present in (2.23) does not exceed

that of the quantity

-u +iB-iC a f(r) r dr (2.26)

where C is a constant. If f(r) O(rb) as r 0 where b > 0 the integral appearing in

(2.26) is absolutely convergent whenever > 0 and furthermore tends to zero as _+

by the Riemann-Lebesgue lemma, since on taking log r as new variable of integration it

becomes one of the Fourier type. Therefore the integrand present in (2.23) tends to

zero as B + for all > 0, so that L may be deformed onto I provided allowance is

made for the contributions from the poles in the region crossed. Since these poles oc-

cur at the zeros of the function J (ka), where the function (u,r) defined by (i 6) re-
I/

duces to the product Ju(kr)Yu(ka) we find, on calculating the residues at these points,

the summation appearing in the formula (2.24) which is therefore proved.

3. APPENDIX.

To obtain the bound (2.10) we consider first the integral representation:

r() r (u+)J (x)= 2(x/2) u (l-t2)U-1/2cos(xt)dt
u 0

This result applies, [7], p. 48, whenever Re(u)>-1/2. On setting u a + iB and taking

the modulus of each side we find, for positive values of x, the inequality,

-t2)-IF (1/2) r (u+)Ju(X) < 2(x/2) = (I dt

The integral appearing on the right hand side of this inequality equals

r(1/2) r(a+1/2)/r(a+l) so that

r(u+1/2)J (x)l < (x/2)ar(a+1/2)/r(a+!)
U

(3.1)
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for Re(u) > -1/2. To obtain a suitable bound on J (x) valid for other values of u we
u

appeal to the formula, [7], p. 165

r(1/2) r(1/2-u)J (x)= 2(x/2)-u[ (l-t2)
u

cos(xt-u.)dt-sinu 10=(l+t2)-U-e-Xtdt]
Since sinu _< coshSz and cos(xt-u) _< coshS, we find that

F(1/2) F(1/2-u)J (x) < 2(x/2)-acoshBr[ (l-t) dt

+ i=(l+t2)-a-1/2e-Xtdt] (3.2)

Since a < -2 the first integral on the right hand side of this inequality does not ex-

ceed unity. To treat the second integral we divide the domain into the parts (0,i)

and (i,) and use the facts that l+t
2 < 2 in the first part and 1+t

2 < 2t
2

in the

second part. We then find that this integral does not exceed the quantity.

2-a-1/21e-Xtdt + 2-a-1/211t-2a-i-xe tdt

< 2-a- + 2-a-1/2=t-2a-le-xtdt
2-- + 2-a-x2aF(-2a)

The relation (3.2) therefore leads to the bound:

Ir(1/2)r(1/2-u)J (x) < [(I + 2+1/2)a-2a + r(-2a)] 2 x coshB
U

after using the fact that 0 < x < a. This bound applies for Re(u) < -. Then

X
a

(3 I) and (3.3) together show that Ju(X) _< G(,) where G(a,) is, for given

a, a continuous function of B.

(3.3)
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