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ABSTRACT. In this paper, ve investigate the flov of a viscous, Incompresslble,

electrlcally conducting fluld through a rectangular duct in the presence of a magnetic

fleld, when one of the boundaries perpedlcular to the umgnetlc field is partly

conducting and partly Insu/atlng, by a modified Boundary Integral Hethod.

Three problems are considered (1) flov through an infinite channel, (li) flov

through a rectangular duct vhen the conducting part is symmetrlcally situated, and

(Ill) flow through a rectangular duct vhen the conducting part is arbltrarily

positioned.

Such problems have been studied before by asyptotlc means for large values of H,

the Hartmann nuaber. Hoverer, the present odlflcatlon of the Boundary Integral

Method renders the proble coputatlonally efficient and provides a rellable ntmerlcal

solutlon for all values of H. For large M, our coputatlon tlme decreases

slgnlflcantly.

KEY ORDS AND NEW PHRASES. Boundary Integral method, Hl flow, and asymptotic

solutlons.

1980 AMS SUBJECT CLASSIFICATION CODE. 76t/05.

1. INTRODUCTION.

The MHD flov of an electrlcally conducting fluld through ducts in the presence of

a :agnetlc fleld is of ipotance in various areas of technology and engineering such

as HHD power generation, HHD flow-eters, HHD pumps etc. Since the classlcal orks by

Hartmann [I] and Shercllff [2], many investigations have been carried out in vhlch

various combinations of boundary conditions have been considered [3-14]. Speclal

attention has been paid in these investigations to large values of M, the Hartmann

number, to study the formation of various boundary layers in the fleld at large H.
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Hunt and Williams [I 5] studied the effects of a discontinuity in the

electromagnetic boundary conditions by considering the flow driven by the currents

produced by electrodes placed in each plane of flat channel. The authors [|6, 17]

recently extended this Idea and investigated the MHD flow through ducts in which one

of the boundaries perpendicular to the magnetic field had mixed electromagnetic

boundary conditions; by reducing the problem to the solution of a Fredholm Integral

equation.

In the present paper, we investigate the MHD flow through ducts, when one of the

boundaries perpendicular to the magnetic field has a portion of the boundary perfectly

conducting and the remaining boundaries are Insulated, by the Boundary Integral

Method. Three geometries are considered (i) an infinite channel, (ll) a rectagnular

duct when the conducting part is symmetrically situated, and (Ill) a rectangular duct

when the conducting part is arbitrarily positioned. The usual boundary integral

method has been modified to develop an Integral equation for the value of the magnetic

field on the conducting part of the boundary, which integral equation has a

singularity no stronger than An r. This integral equation has been solved numerically

and’ the results presented for various values of the Hartmann number. Such problems

would arise, e.g., in coupled MHD ejectors.

2. THE EQUATIONS OF MOTION.

Consider the flow of a viscous, incompressible, electrically conducting fluid

through a duct. The flow is driven by a constant pressure gradient and is assumed to

be fully developed, steady and laminar. A unlform magnetic field is applied

perpendicular to the boundary with mixed electromagnetic boundary conditions.

The equation of motion and the curl of Ohm’s law in the dimensionless form are

(Shercllff [2], Dragos [18])

Bv2v + M-if -, (2.,)

V2B + M "x 0 (2.2)

Here V is the velocity in the z-dlrectlon, B is the induced magnetic field and M

is the Rartmann number defined by

M PeHoL,(o/p)
1/2

(2.3)

where L, is a characteristic length and p, o and Pe respectively denote the

coefficient of viscosity, electrical conductivity and magnetic permeability. H is
O

the strength of the applied magnetic field directed along x-axis.

3. SOLUTION FOR PRIMARY FLOW.

Taking the primary flow as corresponding to perfectly insulated walls, its

solution is given by

Iv
0
(x) ch ,..’Ma ch M (,.. x) (3.

2M shMa
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a
a sh M(a x)

B0(x) =W (- x) (3.2)

sh Ma

for an infinite channel bounded by the planes x 0 and x a.

The solution for a rectangular duct bounded by the planes x O, x a and y +/-

b is

and

v0(,y)-- .
m--I ,3

v (x) sin
mr m_

m -- cos 2b (3.3)

B0(x y) >’. b (x) sin cos
m -- 2b

re=l,3
(3.4)

where

v (x) 16b
2 sho x ch

m
[I m M(a-x)+shPm(a-x)c Sx

shp a
m m

(3.5)

and

(a-x) sh16b
2 shPm Mx-shPmX sh - M(a-x)

b (x)
m ’’ shp a

m 1 m
(3.6)

22 M22 m n + ----Pm
4b

2
(3.7)

For a rectangular duct bounded by the planes x O, x a, y 0 and y b, the

primary solution is easily obtained from equations (3.3) and (3.4) by a suitable

change of variable.

We shall examine the effect of the perfectly conducting part of the boundary on

the flow in the following sections. Thus we write the solution for the flow as

+ (3.8)B B0
B

where V and B are the velocity and magnetic field induced by the electrical

conductivity of the boundary.

4. SOLUTION FOR SECONDARY FLOW.

are

The equations of motion for secondary flow and the associated boundary conditions

3B
V2V + M 0 (4.1)

V
V2B + M 0 (4.2)

V 0 on the boundaries (4.3a)

B 0 on the non-conducting boundaries (4.3b)

B 3B
o

---ffi 3n on the conducting part of the mixed boundary (4.3c)
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where /n denotes the derivative in the normal direction.

A solution of equations (4.!) and (4.2) is

and
Vl(X,y) sh- f(x,y)

Bl(X,y) ch- f(x,y)

(4.4)

(4.5)

where the function f(x,y) satisfies the differential equation

_! M
2V2f f 0 (4.6)

and the boundary conditions

f 0 on the non-conducting boundaries

Bf- (0 y) --0 y) on the conducting part.x

(4.7)

(4.8)

The appropriate solution of equation (4.6) in terms of the Green’s functions G is

given by

f(P) =-- f {f(Q) G(P,Q) G(P,Q)-Q} dSQ (4.9)

Here P is any point interior to the domain D, Q is any point on the

boundary D of the domain D and /SnQ denotes the derivative in the direction of the

outward drawn normal. G is a suitable Green’s function.

4.1 THE FLOW IN AN INFINITE CHANNEL.

Assume that the conducting part of the boundary x 0 is symmetrically situated

at y c. Because of the symmetry of the problem, we need to consider the solution

in the region y 0 only. The boundary condition at y 0 becomes

Choosing

(yx, o) 0 (4.10)

C(x,y;,n) (-I)m {Ko[ V’(Xm-)2+(y-n)2 + (4.1 i)

+K M )2
o [ ’/(Xm -)2+(Y+r

where
m

Xm (m + )a + (-1) (x a) (4.12)

equations (4.9), (4.4) and (4.5) give
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and

Mx
c GBl(X,y) - ch - f BI(O,) x,y;O,) dq

O

(4.13)

Mx c G
Vl(x,y) - sh- BI(O,) x,y:O,) d

O

(4.14)

8G
has of the _INotice that-v a singularity type at x 0, y q, and we still need

r
to differentiate it.

4.2. MODIFI ED [NTEGRJ EQUATION FOR B

Differentiating equation (4.13) with respect to x and taking limits as x tends to

zero, we obtain from (4.3c)

2-( B
lira Bl(O,n)- x,y;O n) d 2n---x (0 y)
x+O o g2

(4.15)

where G is given by

-(x,y;g,n) M{K [ /(Xm-)2+(y-n)2] +
O

+ K
M /(Xm_)2+ 2

o [-f (y+r)

(4.16)

Since the function G also satisfies the differential equation (4.6), equation

(4.15) can be rewritten as

lira Bl(O,n) (x,y;O,q) 82 (x,y;0 n)]dn 2n-x(O, y)
x+O o 2

(4.17)

Integrating the second term in the integrand by parts and noting that B
G

at c and --vanishes at 0, equation (4.17) reduces to

lira f 4 Bl(0,)(x,y;0,)+Bl(0,n (x,y;0,)]d 2 (0,y)
x+0 o

vanishes

(4.18)

where a prime(’) denotes the derivative with respect to .
Assume

g(n) f Bl(O,y)dy
O

(4.19)

which implies

and

g(0) 0

g’ (r) Bl(O,’q)

(4.20)

(4.21)

Equation (4.18) now leads to

c
-1 2

2n_O(olira f [! g (n)(x,y;0,n) + g"(n (x,y;0 n)] dn ox ’Y)
x+0 o

(4.22)
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Integrating first term in the Integrand by parts and using (4.20) we have

c B
ollm [ M2g(c)(x,y;0,c) f h(qy(X,y;0,)dn] 2 -x(0,y)

x+0 o
(4.23)

where the function G is given by

G(x,y;,n) . {K M
o[" / (Xm-)Z+(y-n)21 (4.24)

and

-K M
o[ /(Xm-) 2+(y+U) 21

h(r) g"(rl) -- M2g(rl) (4.25)

Integrating equation (4.23) with respect to y from 0 to y and taking the limits,

we finally obtain the following integral equation for h

c

f h(q)G(0,y;0,v)dq g(c)P(y) + Q(y)
o

where

and

P(y) -- ’(O,rl;O,c2)dn
o

B
oQ(y) 2 --x(O,r)dr

o

(4.26)

(4.27)

(4.28)

Equation (4.26) is the integral equation we need to solve. One should note that

this equation has a singularity of the type n r which can be handled by the usual

boundary integral technique. Also, equation (4.26) needs to be solved only on the

conducting part of the boundary, and not over the whole boundary, and this leads to

significant saving in computation. However, the constant g(c) still needs to be

determined, g(c) is calculated as follows:

Let

h() g(c)hI() + h2( (4.29)

where h and h
2
satisfy

c
.f hl(rl) G(O,y:O,r)dr P(y)
o
c

f h2(n) G(0,y;0,n)drl Q(y)
o

respectively.

Also let

g(n) g(c)gl(r) + g2(rO

(4.30)

(4.31)

(4.32)

where gi(n) satisfy the BVP
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gi"(n) 2gi(n) hi(n)

with gi(O) O, gi(c) 0 (i 1,2)

(4.33)

By solving equations (4.30) and (4.31) for hi(n), one can obtain gi(n) from

equation (4.33). Now g(c) can be obtained from equation (4.32) by using the condition

g(c) g(c). We have

g2 (c)
g(c) gl(c)

(4.34)

Having obtained g(c) and gi(n), Bl(0,n) can be calculated from equations (4.32)

and (4.21).

4.3. NUMERICAL COMPUTATIONS.

Equations (4.30) and (4.31) were solved numerically by descretizing the interval

(0,c) into a mesh and using an analog of Euler’s mid-point rule for integration

j+l h(n)G(0,y;0,n)dn h(nj+i/2) j+l G(0,y;0,n)dn (4.35)

Thus the values of h were calculated at the mid-points of the mesh-points rather

than at the nodal points. The values of y were also chosen at these same points. The

resulting linear algebraic system of equations was solved on the Cyber 860 at the

University of Calgary, Calgary, Canada invoking the IMSL subroutine LEQTIF which

uses the Gauss elimination method with partial pivoting.

Note that G has a singular part of the form K (IwMr) when y n. This part was
o

first integrated by parts resulting into an integrand without a singularity but which

varies sharply for large M, near r 0. This was, therefore, computed accurately

using the IMSL routine DCADRE. The remaining integrals, being free of singularities,

were evaluated using the three point Gauss Legendre formula, which was sufficient to

produce desired accuracy.

The BVP (4.33) was solved using Green’s functions (rather than the shooting

method which would cause difficulties for large M). Once again an analog of Euler’s

mid-point formula was used to calculate the integrals and this enabled us to compute

the values of BI(0,) at the nodal points of the mesh.

The values of Bl(0,n) were calculated using 50 and i00 mesh-points. To further

improve the accuracy of the results, Richardson’s extrapolation was used. The

improved values of Bl(0,n) were used to compute the secondary flow given by equations

(4.13) and (4.14), using the subroutine DCADRE, once again.

4.4. RESULTS AND DISCUSSION.

The velocity distribution and magnetic field were calculated for c 0.2 and

various values of M. This problem has been investigated by the authors [17] recently

using the Fourier transform technique, and the present results for these cases are in

good agreement with the results obtained there. However some difficulties were
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encountered there for large values of M. Such difficulties were not encountered

here. Also worth mentioning is the fact that using the present method the execution

time reduced with increasing values of M as fewer terms are needed for coputatlon of

the expression for the Green’s function G. For M- I0, it took 1.950 seconds of CPU

time on he Cyber 860 for calculating BI(0,) for a single run, but for M 50 it took

0.485 seconds, and 0.315 seconds for M I00. Indeed this time could have been

further reduced by using the Gauss-Seldel method instead of Gauss elimination, as for

large values of M the algebraic system of equations determining h is highly diagonally

domlnan t.

In Figure 2, velocity contours are presented for M I00. As expected, boundary

layer formation takes place for large values of M near the non-conductlng boundaries

perpendicular to the magnetic field. Also shear layers [16, 17, 19] given by

which emanate from the points of discontinuity in the electromagnetic boundary

conditions are evident in the figure. This shear layer has been depicted in Figure 2

by means of dashed lines.

In Figure 3, the current lines (constant magnetic field lines) are presented for

M I00. Again, one can notice the formation of the two boundary layers for large

values of M. The parabolic shear layer is demarcated by dashed lines. It may be

noted that the changes in the values of magnetic field take place mostly in this

parabolic layer.

4.5. THE FLOW IN A RECTANGULAR DUCT SYMMETRIC CASE.

Again, we assume that the conducting part of the boundary x 0 is symmetrically

ly 4 c. The only difference in the analysis from the preceedlng case is inplaced at

the expressions for Green’s functions. They are now defined as

C(x,y;,n) (-I) m+n’ K M (Xm_)2+ 2]
o [’ (yn-rt) (4.37

mffi- nffi-

n’ M 2+ 2]G(x,y;,n) . . (-1) Ko[- /(Xm-) (yn-n) (4.38)

n" M 2
G(x,y;,) > (-1) Ko[" ,/(Xm-)2+(yn-n)

m---- n’----
(4.39)

where

and

yn (n+ 1/2)b+ (-1)n(y 1/2b)
(n + 1.) n" ()n 2

(4.40)

(4.41)

[x] being the integral part of x.

In Figure 4 and 5, equal velocity lines and current lines are presented

respectively, for c 0.2 and M I00. The parabolic shear layers glen by equation

(4.36) have been demarcated by dashed lines.
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4.6. THE FLOW IN A RECTANGULAR DUCT NON-SYMMETRIC CASE.

In this case

i.e., c y c2.
cases.

the positioning of the conducting part is taken arbitrary

The analysis now is slightly different compared with the previous

and

The expressions for velocity and magnetic field are

C
2Mx GVl(x,y) - sh- Bl(0,n) - (x,y;O,) dn

c
(4.42)

c
2

Mx GBl(X,y) =-- ch-_ Bl(0,n) - (x,y;0,n) dn
c

(4.43)

where

G(x,y;,) l)m+n M 2+(yn_n)2Ko[ (Xm-) (4.44)
m=- n=-

x and Yn being defined by equations (4.12) and (4.40) respectively.

Defining

g() Bl(0,y)dy (4.45)
C

and proceeding as in Section 4.2, we obtain the following integral equation for h()

c
2
h(n)G(0,y;0,)dn g(c2)m(y) + Q(y) + A (4.46)

c
where

M2p(y) - (0,;0,c2)d (4.47)
c
y B

Q(y) =-2r f o--x(0,n)d (4.48)

and Cl
C
2

A f h()G(0,Cl;0,)d (4.49)
c

The functions G and G now become

and

(_ i) nK M 2 2
o[y (Xm-) (yn-)

M 2+ 2]Ko[- J(Xm-) (Yn-n)

Now there are two constants A and g(c 2) which need to be calculated.

h() g(c2)hl(n) + h2() + Ah3()

where hI, h
2

and h
3

are given by

i2 hl() G(0,y;0,n)d P(y)
C

Let

(4.50)

(4.51)

(4.52)

(4.53)
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2 h2(n G(O,y;O,n)dn

respect ive ly.

c,j2 () G(O,y;0,rl)drl
c

Further assume

(4.54)

(4.55)

g(r) g(c2)g
where gi(n)satisfy the BVP

(n) + g2(n) + Ag3(n)

M2gigi() () hi()

(4.56)

’(c )= 0, g(c )= 0 (i- 1,2,3) (4.57)with gl 2

The constants A and g(c 2) can now be obtained by using the

condition g(c I) 0 and the trivial condition g(c2) g(c2). We have

gl(Cl)g2(c2)-g2(cl [gl(c2 )-I]
A (4.58)g3(cl)tg (c2)-11-g3 (e2)g (e 1)

and

g2(cl)g3(c2)-g3(cl)g2(c2)
g(c2) g3(cl)[gl(c2)-l]-g3(c2)gl(Cl)

(4.59)

In Figures 6 and 7, equal velocity lines and current lines are shown

respectively, for c 0, c
2
-0.2 and M- I00. The shear layer has been indicated

by dashed lines. One should note the interaction of various layers in these

figures. Such interaction would be difficult to obtain by asymptotic methods.

Finally in Figure 8, the values of B(0, y) are plotted on the conducting part for

the geometries considered in this paper.
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Figure I. Geometry of the duct.

FiLwe 2. Equal velocity lines in infinite channel (y)_ 0)
for M I00, a I, c 0.2. The parabolic boundary
layer is indicated by dashed lines.
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FiEure 3. Equal magnetic field lines in iinite channel
(y >. O) for M : I00, a : I, c : 0.2. The parabolic
boundary layer is irticated by dashed lines.

Figure 4. Equal velocity lines in the rectangular duct

(s]metric case) for M : I00, a : b : I, c :

The parabolic boundary layer is irKiicated by dashed

ines
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Figure 5. Equal magnetic field lines in the rectangular duct
(symmetric case) for M I00, a b I, c 0.2.
The parabolic bour layer is imlicated by dashed
lines.

Figure 6. Equal velocity lines in the rectangular duct
(non-symmetric case) for M I00, a b I,
c, 0, c 0.9.. The parabolic botmdmry layer is
indicated by dashed lines.



172 B.D. AGGARWALA AND P.D. ARIEL

Figure 7. qual agnetic field lins in the rectangular duct

{non-s,mtric case) for M I00, a b I,

c O, c 0.2. The parabolic botmdary layer is

indicated by dashed lines.
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Figure 8. Values of B on the conducting part of the boundary
x 0 for various values of H. The curves
represent B for infinite channel, the curves
represent B for rectangular duct (symmetric-case} and
the curves represent B for rectangular duct
(non-syuetric case).
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