BOUNDED SPIRAL-LIKE FUNCTIONS WITH FIXED SECOND COEFFICIENT

M.K. AOUF

Department of Mathematics Faculty of Science University of Mansoura Mansoura, Egypt

(Received July 10, 1986)

ABSTRACT. Let $F_p(\alpha,\beta,M)$ (o $\leq p \leq 1$, $|\alpha| < \frac{\pi}{2}$, o $\leq \beta < 1$ and $M > \frac{1}{2}$), denote the class of functions f(z) which are regular in $U = \{z: |z| < 1\}$ and of the form $f(z) = z + |a_2| e^{-i\alpha} z^2 + \dots$, where $|a_2| = p(1 + \sigma) (1-\beta) \cos \alpha$, which satisfy for

fixed M, $z = re^{i\theta} \in U$ and

 $\left|\frac{e^{i\alpha}\frac{zf'(z)}{f(z)}-\beta\cos\alpha-i\sin\alpha}{(1-\beta)\cos\alpha}-M\right| < M.$

In this paper we have found the sharp radius of γ -spiralness of the functions belonging to the class $F_n(\alpha,\beta,M)$.

KEY WORDS AND PHRASES. Spirallike, bounded functions, radius of γ-spiralness. . 1980 AMS CLASSIFICATION CODES. 30A32, 30A36.

1. INTRODUCTION. Let A denote the class of functions which are regular and univalent in the unit disc $U = \{z; |z| < 1\}$ and satisfy the conditions f(0) = 0 = f'(0)-1.

Let $F(\alpha,\beta,M)(|\alpha| < \frac{\pi}{2}, 0 \le \beta < 1$ and $M > \frac{1}{2}$ denote the class of bounded α -spirallike functions of order β , that is $f \in F(\alpha,\beta,M)$ if and only if for fixed M,

$$\left|\frac{e^{i\alpha}\frac{zf'(z)}{f(z)} - \beta\cos\alpha - i\sin\alpha}{(1-\beta)\cos\alpha} - M\right| < M, z \in U.$$
(1.1)

The class $F(\alpha,\beta,M)$ introduced by Aouf [1], he proved that if $f(z) = z + a_2 z^2 + \dots \in F(\alpha,\beta,M)$ then,

$$|a_2| \leq (1 + \sigma)(1-\beta) \cos \alpha, \ \sigma = 1 - \frac{1}{M}.$$
 (1.2)

If $\varepsilon = \exp(-i \operatorname{arg} a_2 - i\alpha)$, then $\frac{f(\varepsilon z)}{\varepsilon} = z + |a_2| e^{-i\alpha} z^2 + \dots \varepsilon F(\alpha, \beta, M)$, whenever $f(z) \varepsilon F(\alpha, \beta, M)$. Thus without loss of generality we can replace the second coefficient a_2 of $f(z) \varepsilon F(\alpha, \beta, M)$ by $|a_2| e^{-i\alpha}$.

Let $F_p(\alpha,\beta,M)$ denote the class of functions $f(z) = z + |a_2| e^{-i\alpha}z^2 + \dots$

which satisfy (1.1), where $|a_2| = p(1 + \sigma)(1 - \beta) \cos \alpha$. In view of (1.2) it follows that $0 \le p \le 1$.

Let $G_p(\alpha,\beta,M)$ denote the class of functions $g(z) = z + |b_2| e^{-i\alpha z^2} + ...,$ regular in U and satisfy the condition

$$\left|\frac{e^{i\alpha}(1+\frac{zg''(z)}{g'(z)}) - \beta \cos \alpha - i \sin \alpha}{(1-\beta) \cos \alpha} - M\right| < M, z \in U, \qquad (1.3)$$

where $|b_2| = \frac{1}{2} p(1+\sigma)(1-\beta) \cos \alpha$.

It follows from (1.1) and (1.3) that

$$g(z) \in G_p(\alpha,\beta,M)$$
, if and only if $zg'(z) \in F_p(\alpha,\beta,M)$. (1.4)

We note that by giving specific values to p,α,β and M, we obtain the following important subclasses studied by various authors in earlier papers:

(i) $F_1(\alpha,\beta,M) = F_M(\alpha,\beta)$ and $G_1(\alpha,\beta,M) = G_M(\alpha,\beta)$, are respectively the class of bounded spirallike functions of order β and the class of bounded Robertson functions of order β investigated by Aouf [1] and $F_1(\alpha,0,M) = F_{\alpha,M}$ and $G_1(\alpha,0,M) = G_{\alpha,M}$, are respectively the class of bounded spirallike functions and the class of bounded Robertson functions investigated by Kulshrestha [2].

(ii) $F_p(\alpha,\beta,\infty) = F_p(\alpha,\beta)$ and $G_p(\alpha,\beta,\infty) = G_p(\alpha,\beta,)$, are considered by Umarani [3].

In this paper we determine the sharp radius of γ -spiralness of the functions belonging to the class $F_{\rho}(\alpha,\beta,M)$, generalizing an earlier result due to Kulshrestha [2], Libera [4], Umarani [5,3].

The technique employed to obtain this result is similar to that used by McCarty [6] and Umarani [3].

2. THE SHARP RADIUS OF γ -SPIRALNESS OF THE CLASS $F_{p}(\alpha,\beta,M)$, M>1.

LEMMA 1. If
$$f(z) \in F_p(\alpha, \beta, M) M > 1$$
, then $\left|\frac{zf'(z)}{f(z)} - w_o\right| \leq \rho_o$, (2.1)

where

w

$$v_{0} = \frac{(1+pr)^{2} + \{[(1-\beta)(\frac{1+\sigma}{\sigma}) - 1] \cos \alpha - i \sin \alpha\} e^{-i\alpha}r^{2}(r+p)^{2}}{(1-r^{2})(1+2pr + r^{2})}$$
(2.2)

and

$$\rho_{0} = \frac{(1+\sigma)(1-\beta)\cos\alpha r(1+pr)(r+p)}{(1-r^{2})(1+2pr+r^{2})} .$$
(2.3)

This result is sharp.

PROOF. Let $f(z) \in F_p(\alpha,\beta,M)$, M > 1., then there exists a function w(z) analytic in U and |w(z)| < 1 in U such that

$$e^{i\alpha} \frac{zf'(z)}{f(z)} = \cos \alpha \left\{ \frac{1 + \left[(1-\beta)(\frac{1+\sigma}{\sigma}) - 1 \right] \sigma_W(z)}{1 - \sigma_W(z)} \right\} + i \sin \alpha, \ \sigma = 1 - \frac{1}{M}$$

or

$$\frac{zf'(z)}{f(z)} = \frac{1 + \left\{ \left[(1-\beta)(\frac{1+\sigma}{\sigma}) - 1 \right] \cos \alpha - i \sin \alpha \right\} e^{-i\alpha} \sigma w(z)}{1 - \sigma w(z)}$$

Solving for w(z),

$$w(z) = \frac{\frac{zf'(z)}{f(z)} - 1}{\sigma[\frac{zf'(z)}{f(z)} + \{[1-\beta)(\frac{1+\sigma}{\sigma}) - 1] \cos \alpha - i \sin \alpha\} e^{-i\alpha}}$$

Since $f(z) = z + |a_2|e^{-i\alpha}z^2 + \dots$, we obtain $w(z)=pz + \dots = z\phi(z)$, where $\phi(z)$ is analytic in U, $\phi(0) = p$ and $|\phi(z)| \le 1$ in U. Now $\frac{\phi(z)-p}{1-p\phi(z)}$ z. Therefore $\phi(z) \quad \frac{z+p}{1+pz}$. Also $|w(z)| = |z\phi(z)| \le \frac{|z|+p}{1+|z|p} |z|$. Let $g(z) = \frac{|z|+p}{1+p|z|} z$

and

$$h(z) = \frac{1 + \{[(1-\beta)(\frac{1+\sigma}{\sigma})-1] \cos \alpha - i \sin \alpha\} e^{-i\alpha} \sigma z}{1 - \sigma z}$$

Since the image of $|z| \le r$ under g(z) is a disc and h(z) is a bilinear transformation, then $\frac{zf'(z)}{f(z)}$ is subordinate to (hog) (z). That is, the image of $|z| \le r$ under $\frac{zf'(z)}{f(z)}$ is contained in the image of $|z| \le r$ under (hog)(z).

Equality in (2.1) can be attained by a function

$$f(z) = z(1-2p\sigma z + \sigma z^{2})$$

$$(1-\beta)\cos \alpha e^{-i\alpha}$$

$$(2.4)$$

=
$$z + p(1+\sigma)(1-\beta)\cos\alpha e^{-i\alpha}z^2+...$$
;

hence

$$\frac{zf'(z)}{f(z)} = \frac{1-2p\sigma \ z+\sigma z^2 - (1+\sigma) (1-\beta)\cos\alpha \ e^{-i\alpha} z(z-p)}{1-2p \ \sigma z + \sigma z^2}$$
$$= \frac{1+\sigma \ \psi - (1+\sigma) (1-\beta)\cos\alpha \ e^{-i\alpha} \psi}{1+\sigma \psi}, \qquad (2.5)$$

where $\psi = \frac{z(z-p)}{1-p\sigma z}$. Since $p \le 1, 0 \le \sigma \le 1, |\psi| \le 1$ for $z \in U$.

This shows that

$$e^{i\alpha} \frac{zf'(z)}{f(z)} = \cos\alpha \left\{ \frac{1 + \left[1 - \left(\frac{1+\sigma}{\sigma}\right)(1-\beta)\right] \sigma \psi(z)}{1 + \sigma \psi(z)} + i \sin\alpha \phi \left(\frac{1+\sigma}{\sigma}\right) \right\}$$

and

$$\frac{e^{i\alpha} \frac{zf'(z)}{f(z)} - i \sin\alpha - \beta \cos\alpha}{(1 - \beta) \cos\alpha} = \frac{1 - \psi(z)}{1 + \sigma \psi(z)}.$$

Then it is easy to show that $\left|\frac{1-\psi(z)}{1+\sigma\psi(z)}-M\right| < M$, $\sigma = 1-\frac{1}{M}$. Thus $f \in F_p(\alpha,\beta,M)$.

Substituting $\psi = -\frac{\delta(\delta - \sigma e^{i\alpha})}{\sigma(1 - \sigma \delta e^{i\alpha})}$, where $\delta = \frac{r(r+p)}{1+rp}$ in (2.5), we find that

$$\left|\frac{zf'(z)}{f(z)} - w_0\right| = \rho_0$$
, where w_0 and ρ_0 are given by (2.2) and (2.3).

This completes the proof of the lemma.

REMARK 1. (i) If p=1 and $\beta=0$ in Lemma 1, we obtain a result of Kulshrestha [2]. (ii) If $M = \infty(\sigma=1)$ in Lemma 1, we obtain a result of Umarani [3]. (iii) If $\alpha=0$ and $M=\infty(\sigma=1)$ in Lemma 1, we obtain a result of McCarty [6]. THEOREM 1. If $f(z) \in F_p(\alpha, \beta, M)$, > 1, then f(z) is γ -spiral $|z| < r_{\gamma}$, where r_{γ} is the smallest positive root of the equation

$$\cos \gamma + p \left[2 \cos \gamma - (1+\sigma)(1-\beta)\cos\alpha \right]r + \left[p^{2} \cos \gamma + cp^{2} - (1+\sigma)(1-\beta)\cos\alpha(1+p^{2}) \right]r^{2} + p \left[2c - (1+\sigma)(1-\beta)\cos\alpha \right]r^{3} + cr^{4} = 0, \qquad (2.6)$$

where $c = cos(\gamma - 2\alpha) + [(1-\beta)(\frac{1+\sigma}{\sigma})-2] cos \alpha cos(\gamma - \alpha)$. The result is sharp. PROOF. Let $f(z) \in F_p(\alpha,\beta,M)$, M > 1, then by the above Lemma, we have

$$\left|\frac{zf'(z)}{f(z)} - w_{0}\right| \leq \rho_{0}.$$

Hence Re $e^{i\gamma} \frac{zf'(z)}{f(z)} \ge Re e^{i\gamma} \cdot w_0 - \rho_0$

$$\cos \gamma (1+pr)^{2} + \operatorname{Re} \left\{ \left[(1-\beta)(\frac{1+\sigma}{\sigma}) - 1 \right] \cos \alpha - i \sin \alpha \right\} e^{i(\gamma-\alpha)} r^{2} (r+p)^{2}$$

$$= \left[\frac{-(1+\sigma)(1-\beta)\cos \alpha r(1+pr)(r+p)}{(1-r^{2})(1+2pr+r^{2})} \right]$$

$$\cos \gamma (1+pr)^{2} + \left\{ \cos(\gamma - 2\alpha) + \left[(1-\beta)(\frac{1+\sigma}{\sigma}) - 2 \right] \cos \alpha \cos (\gamma - \alpha) \right\} r^{2} (r+p)^{2} \\ = \left[\frac{-(1+\sigma)(1-\beta)\cos\alpha r(1+pr)(r+p)}{(1-r^{2})(1+2pr+r^{2})} \right] .$$
(2.7)

f(z) is γ -spiral if the R.H.S. of (2.7) is positive. Hence f(z) is γ -spiral for $|z| < r_{\gamma}$ where r_{γ} is the smallest positive root of the equation

$$\cos \gamma (1+pr)^2 + \left\{\cos(\gamma-2\alpha) + \left[(1-\beta)(\frac{1+\sigma}{\sigma})-2\right] \cos \alpha \cos(\gamma-\alpha)\right\}, r^2(r+p)^2$$

 $-(1+\sigma)(1-\beta)\cos\alpha r(1+pr)(r+p) = 0.$

Simplifying the above equation, we obtain (2.6).

If $\gamma=0$ in the above theorem, we obtain the radius of starlikeness of the class $F_{\alpha}(\alpha,\beta,M)$.

COROLLARY 1. $f(z) \in F_p(\alpha,\beta,M)$, M > 1, is starlike for $|z| < r_o$, where r_o is the least positive root of the equation

$$1+p \ [2-(1+\sigma)(1-\beta)\cos\alpha]r + (\frac{1+\sigma}{\sigma})(1-\beta)\cos\alpha \ [\cos \alpha p^{2} - \sigma (1+p^{2})]r^{2} + p[2c-(1+\sigma)(1-\beta)\cos \alpha] r^{3} + cr^{4} = 0, \qquad (2.8)$$

where $c = (\frac{1+\sigma}{\sigma})(1-\beta) \cos^2 \alpha - 1$.

If p=1, Y=0 and $\beta=0$ in Theorem 1, we obtain a result of Kulshrestha [2].

COROLLARY 2. $f(z) \in F_{\alpha,M}$, M > 1, is starlike for $|z| < r_0$, where r is the least positive root of the equation

$$1-(1+\sigma)\cos\alpha r+[(\frac{1+\sigma}{\sigma})\cos^2\alpha - 1] r^2=0.$$

REMARK 2. (i) If $M=\infty$ ($\sigma=1$) in Theorem 1, we obtain a result of Umarani [3]. (ii) If p=1 and $M=\infty$ ($\sigma=1$) in Theorem 1, we obtain a result of Libera [4] and Umarani [5]. (iii) If p=1, $\beta=0$, $\gamma=0$ and $M=\infty$ ($\sigma=1$) in Theorem 1, we obtain a result of Robertson [7]. Since $g(z) \in G_n(\alpha,\beta,M)$ if and only if $zg'(z) \in F_n(\alpha,\beta,M)$ we obtain from <u>Theorem 1</u>, THEOREM 2. If $g(z) \in G_n(\alpha,\beta,M)$, M > 1, then Re $e^{i\gamma}(1 + \frac{zg''(z)}{\sigma'(z)}) > 0$ for $\left|z\right| < r_{\gamma}$, where r_{γ} is the least positive root of equation (2.6). The result is sharp. If $\gamma=0$ in <u>Theorem 2</u>, we obtain the radius of convexity of the class $G_p(\alpha,\beta,M)$. COROLLARY 3. If $g(z) \in G_n(\alpha,\beta,M)$, M > 1, then the radius of convexity of g(z) is the least positive root of equation (2.8). REMARK 3. (i) For $M=\infty$ ($\sigma=1$) in Theorem 2, and Corollary 3, we obtain a results of Umarani [3]. (ii) If p=1 and $\beta=0$ in Corollary 3, we obtain a result of Kulshrestha [2]. (iii) For p=1 and $M=\infty$ ($\sigma=1$), Theorem 2, generalizes the result of Umarani [5]. REFERENCES 1. AOUF, M.K. Bounded p-valent Robertson functions of order a, Indian J. of Pure and Appl. Maths., 16 (1985), 775-790. KULSHRESTHA, P.K. Bounded Robertson functions, Rend. di Matematica, (6)9, 2. (1976), 137-150. Spiral-like functions with fixed second coefficient, Indian J. 3. UMARANI, P.G. Pure appl. Math. 13(3) (1982), 370-374. 4. LIBERA, R.J. Univalent α-spiral functions, <u>Canad. J. Math. 19</u> (1967), 449-456. UMARANI, P.G. Some studies in univalent functions, Ph.D. Thesis, Karnataka 5. University, Dharwad (1976). 6.

- McCARTY, C.P. Two radius of convexity problems, <u>Proc. Amer. Math. Soc.</u> 42 (1972),153-160.
- ROBERTSON, M.S. Radii of starlikeness and close-to-convexity, Proc. Amer. Math. Soc. 16 (1965), 847-852.