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nI. INTRODUCTION. Let f(z) In=0 anZ be analytic in z < R. For a non-decreasing

sequence of positive numbers {d the Gelfond-Leontev (G-L) derivative of f is
n n=l

defined as [I]

Df(z) Z d a z (I.I)
n=l n n

The kth iterate Dkf, k=1,2,..., of D is given by

n-kDkf(z) En=kdn...dn_k+lanz (1.2)

e
n-k n-kEn=k a z
e n
n

-I
where, e =I and e--(dld ...d n-l,2, If d =-n, Df is the ordinary

o n 2 n n
derivative of f; whereas, if d =- I, D is the shift operator L which transforms

n

n n-If(z) r.n=0 anZ into Lf(z) r..n=lanz

Let,

(z) ln=oen (1.3)

and have radius of convergence R From the monotonicity of {d we have
o n n=l

R lim d sup {d }.
o n n

n nl

Clearly, (0) and D(z) (z). Thus, (z) bears the same relationship to the

operator D that the function exp(z) bears to the ordinary differentiation.

For an entire function f, Nachbin used the function (z) as a comparison

function for measuring the growth of maximum modulus of f on Izl r. Thus, the
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growth parameter -type of f is defined as the Inflmum of the positive numbers

such that, for sufflclently large r,

If(z) M(r) (1.4)

where, (z) is entire and M is a positive constant. We denote -type of f as

z(f). It is known [2,p.6] that

a

n / n

For d n, the -type of an entire function f reduces to its classical exponentialn
type and the formula (1.5) gives its well known coefficient characterlsatlon [3, p.

11].

The comparison function (z) can also be used to define a measure of growth

analogous to classlcal order [3, p.8] of an entire function. Thus, for an entire

function f, let the -order p(f) of f be defined as the inflmu of positive numbers

p such that, for sufflclently large r,

If(z)l K(rp) (1.6)

where (z) is entire and K is a positive constant.

Shah and Trimble [4,5] showed that if f is entire then, the assumption that the

classical derivatives f(np are unlvalent in A- {z: [z[ < I} for a sultable

increasing sequence (n of positive integers affects the growth of the maximum
p

n
modulus of f. If instead, we asse that the G-L derivatives D Pf of an entire

function f are unlvalent in A, then it is natural to enquire in what way the

-type and -order of f are influenced. The present paper is an attempt In this

n
direction. In Theorem 1, we find that if f is entire, D Pf are univalent in and

lira sup (rip-rip_I) , < ", then the -type (f) of f must satisfy
p/

’(f) 2(d(l+1).,.d(2))

Further, if -=, then f need not be of finite -type. Our Theorem 2 shows that

n
if f is entire, D Pf are univalent in A and n n

p p+l
as p , then

P(f) ioE d(np-np_I)
lim sup log d(n
p/= p

It is clear that if 0 p(f) 1, then the above inequality gives no relationship

n
between D Pf and the -order of an entire function f. In fact, no such relation of

this nature exists. This is illustrated in Theorem 3, wherein for any given
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p, 0 4 P I, and any given increasing sequence [np}p. of positive integers, we

n
construct an entire function h, of O-order p, such that D Ph is univalent in

and only if n=n
P

In the sequel, we shall assume throughout that d as n .
n

2. -TYPE AND EXPONENTS OF UNIVALENT G-L DERIVATIVES.

nTHEOREM I. Let f(z) En=0 a z be an entire function and {n } be an
n p .I

n
Increasing sequence of positive integers. Le___t D Pf be analytic and univalent in

A Suppose llm sup (np-np_I) , < ". Then_____, th___e -type T (f) o__f f

satisfies P

1/
T#Cf) 2(dC+l)...d(2)) (2.1)

PROOF. By the hypothesis,

n
k

D Pf(z) Zk=0 d(n?k)...d(k+l)a(np+k)z

are univalent in a. Since, for any function G(z) bo+blZ+b2z+... univalent in

A ,it is known [6] that Ibnl ’ get

dk. .d

la(np+k) 4 k
d d d(np+l)...d(2)la(np+l)
k+n

P

(2.2)

for k=l,2,.., and p=2,3, In particular, putting k=np+l-n/l and inducting upon

p, we get, for p ) 2 and 2 k np+l-np+l
dk. .d p

la(np+k)] Ak dk+n" ..1.dl i=2 (ni-ni-l+l)d(ni-ni-l+l)’’’d(2) (2.3)

P

where A=d(nl+l)...d(2)la(nl+l) I. Hence, for sufficiently large p,

a(np+k)[e(n +k)]
P

l/(np+k)

1/(n +k) p

(I+o(I))(dk...d P

i=2
{(nl-ni_1+l) d(ni-ni_l+l) d(2)

Since, (dk.. .dl
1/(np+k)

is an increasing function of k, and

1/(np+k)

(np+l-np) U’, U’ > U, for sufficiently large p,

I/(n +k) I/np+(dk...dl) P (d(np+l_np+l)...d(1)) I= (I+(I))
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Further [7], for p 2

P
II (ni-ni_l+l)

Using (2.5) and the preceding

I/(np+2) n p/n
(I+ p-) P 2 (2.5)

inequallty in (2.4), we get for sufflclently large p,

1/(n +k)
a(n_+k) P p I/(rip+k)

2(I+I)) l[ (d(nl-ni_l +I)...d(2)

Now, if aj O, tj 0, r. tj > 0 and max

IJN-I () --- then clearly,

(2.6)

N

(2.7)

Further, log(d(J+l)...d(2))/J is an increasing function of J for

J , 1,2, Thus, if j ,
log(d(J+l)...d(2)) .log(d(+l)...d(2)) (2.8)

Let P Suppose tT is the number of Ji’s in [po,p] such that

nj+l-nj
for J Ji" Then, by (2.7)and (2.8),

P

Po11og(d(nj_nj_l+l)..z.d(2)) t (log(d(7+l) d(2)
p 7___’1 7

log(d(+I.)....d(j2)r. (nj-nj_ U

Po+l
r. y t77=I

The above inequality implles that
P

p I/(np+k) I_Z2 log(d(ni-nil+l)...d(2)II (d(nl-n l)...d(2)) exp
I=2 i-I+ np

P

Pol log(d(n
i +l)...d(2))

exp {o(I)+
-ni-I

p -}

Po+Z1 (nl-ni-

exp(o(1)+ !og(d.(.U+1)...d(2).)}
Using the estimate (2.9) in (2.6) and proceeding to llmlts

I/k
a
k ,a(n +k) 1/(rip+k)lim sup J-k llm sup {le(np+k)l 2 k np+l-np+l, p 2)k/(R) p

2(d(+l)...d(2)) 1/.

(2.9)

This completes the proof of the theorem.
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REMARK I. In Theorem I, it is sufficle.nt to take the function f to be analytic in

Izl < R, for some R, 0 < R < , if the sequence [d in the definition of G-L
n

n=

m logd(1) )/m)-. In fact for anderivative of f satisfies the condition ltm ((r-t_2
n

sup (n -n , < ", and
p p-I

m log d(1)El=2
lira

holds, then f is necessarily entire. To see this, we use (2.5) and

1/(n +k)
p I+o(I)(dk. ..d I)

for sufficiently large p in (2.3) to get

1/(np+k)
a(np+k)

n
p

2( 1+o( )exp [1_._
n i2 lg(d(ni-ni-I
p

+l)...d(2))

(2.10)

n +k
P
E log d(i)]

n +k
p i-2

for sufficiently large p. But since, for sufficiently large p,(np-np_

n

iZ2_ log(d(ai-ni_l+l)...d(2)) 0 as p

P

Thus, by (2.10) and the condition llm ((r.=2 1ogd(i))/m)

I/k I/(n/k)ltm sup lakl lira sup {[a(np+k)l,, 2 k ’ np+l-n +1 2}Pk/ p

0.

REMARK 2. The inequality (2.1) can be improved by imposing suitable additional

restrictions on the sequence {d } For example, let the sequence {dn}:n n-i"
be such that

{d(n+2)}n 3d(n+l)...d(2) n+l), n-1,2,3 (2.11)

Note that (2.11) is satisfied for d =na,a I.
n

Because of (2.11), the function s(J) defined by

s(j) log(d(J+l)...d(2))+log(J+1)
J

is an increasing function of J and so for j=1,2,...; V=I,2...
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1og(.d(.J+1),, .d(2).)+log(J+l) log(d(+1),, ,d(2))+1og(/1_)_
j U

(2.12)

Let ty be the same as in the proof of Theorem 1. Using (2.7) and (2.12), we get

p 1[ (n +k)
II {(ni-nl_l+l)d(nl-ni_l+1)...d(2)} P

i=2

exp {o(I) +

P

Pol {log(d(nl-ni_l+l)...d(2)) + log(nl-ni_l+1)}

The above inequality, when employed in (2.4), gives

a (np+k) I/(rip+k) p I/(n +k)

l(n +k) (I+O(I)) lI {(nl-nl_l+l)d(ni-nl_l+l)...d(2)) P

p i-2

(+1)11(d(N+1)...d(2)) I/.
Now, on proceeding to limits, we get

lip
x(f) (+1) (d(+1)...d(2)) (2. t3)

It is clear that the bound on x(f) in (2.13) is better than that in (2.1).

REMARK 3. By taking =I, Theorem gives x(f) 2d(2), a result recently

proved in [8].

Theorem shoes that if (np-np_I) 0(I), then f is of finite -type.

We now give an example to show that if lim sup(np-np_I) , then f need not be of

finite -type. P +

EXAMPLE. Let {n be an increasing sequence of positive integers such thatp p=l

(np+l-np) 2 for all p. Further, assume that the sequence {d }m
n n=l is such that

(i) d =- and log d(n) log n as n

(ll) n o(n
p p

(ill) =O(nplog d(n ))
P P
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where, n r-=2 log(d(ni-ni_P
+1)...d(Z) ),

Let be a non-decreasing step function such that (nl)-(n2)

and

exp (n)
(n p-I p 2

P 2

q(x) (n n < x n
p p p+l.

Let

gJ+l

(j)
if J-n for some p

d(J+l)...d(2) (J-n +1) p
P

0 otherwise.

Define

z
jg(z) Zj=ogj

We first show that g is an entire function. We have

(n
lira suplgkl I/k= lira sup [d(nl

p

k / p
)...d(

I/n +I
P

exp(n /n
lira sup[ P P

p (d(np+l)...d(2)) I/np+l
n +I

n p
lira sup [exp ( n +I iE-2 log d(1))]

p/(R) p P

Since log d(n) ~log n as n using the condition (ill), we get from the above

inequality that

imsup ’lgkl z/" 0.

Hence g is entire, It is easily seen that g is of order 1, But, by the condition

(li),

llk 9(n_)

n,,+, )dlnI;-t"l)-..-. d(2) )l/n
-I-1

lira sup lira sup (e( P
k+(R) p+

exp(n_Inp)
l im sup P

2

Thus, f is not of finite @-type It remains to see that

n
D Pg(z) Zk= d(np+k+l)-..d(np+k-np+2)a(np+k+l)z

np+k-np+l

are univalent in A To this end, it is enough to prove that

d(np+k+l .d 2

Zk.1(rip+k-rip+l) d(np+k-n/1)...d(2)-
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d(n /l)...d(2),,la(np/l)lp

or, equivalently to show that

(n
p+k

$(np).Zk-I d(np+k-np+l).., d(2)

Using the definition of the last inequality reads as

exp(p+k-p)
Zk= 2-- d(np+k_np+1)...d(2

I.

Now, an induction on k, gives, for k=1,2,3,...

p+k
exp (p+k-np) pl d(ni-ni-1 +l)...d(2) d(np+k-np+l)....d(2)

Hence, (2.14) is clearly satisfied.

(2.14)

3. Y-ORDER AND EXPONENTS OF UNIVALENT G-L DERIVATIVES.

A function S(x), continuous on

for every positive number c > 0,

[1,’), is said to be Slowly Oscillating (S.O.) if

S(cx)
lim S(x)

A function H(n) is said to be the restriction of a Slowly Oscillating function

S(x) if S(n) H(n) for every positive integer n. It is known [9] that, as k

zk H(1) k(k). (3 1)
i-l

nTHEOREM 2. Let f(z) Z a z be an entire function of - order O and

{n
p

be a strictly increasing sequence of positive integers.
n

Let D Pf be

analytic and univalent in A, such that n n as p /

p p+l--
restriction of a slowly oscillating function on integers, then

If log d(n) 18 the

log d(np-np_
l-llmp/ (R)sup [log d(np)

-]

(3.2)

We need the following lemmas.

LEMMA I. Let be defined by (1.3). Let Y =mln (xa)x-n a > 0
n
xY0

Then,

n(l --) en_aae d ). (3.3)Yn n n

n

PROOF. Since
n-k

ekedn n

{d)
n n--I

Thus,

is increasing, we note that for any pair of integers k and
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kx
ak

d
n d-k ak*(xa) -k0

e en n kO n
x

Let 0 < w < Setting x =w l’a! we get
W n

-ndn(1 --) w(x:)x:n ( en n

Choosing w- (n/n+a) I/a
to mlnlmle the lht-hand ide ol the above inelallt2, we

have

n(1 1 (+a),)4 n ,(xC)x;n ( e dYn 0<I n n

LE 2. t f(z) En.0 a z be an entire function of -order
where the sequnce {d(n)} i Df s such that log d(n) s the restriction o slowly

oscillating function oposltlve integers.

n log _O(nl (3.4)p,(f) llm sup" log lan
PROOF. By Cauchy’s inequality, we get

Since f is of -order p#(f) =- p, for any > O, If(z) M#(rP+).
So that

Using Lemma I, we have

n(1 +) e(n+p+)I%1 ’ " endn (-’(’P+)-" (3.5)

But, since log d(n) is the restriction of a S.O. function, by (3.1),

log d(1) n log d(n) as n + =. Thus, it follows from (3.5)

n !0g d(n)
.up ’

To prove that equallty holds in (3.4), suppose that

lim sup n. log d(n) < P.
n

log iani
Then, there exist P < p such that

for Izl r,

I/P

lanl < e
n

for n > n It now follows that,
o

n
(3.6)

(0(I) + e
n +I n
O

I/Pt n
r
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Choo8 e

lo r

It is easily seen that N(r) + as r + =. Since for all values of k and n,

en < ekdt-n we have

1/P k-n/PI/Pl n nZn.0 e r ( d
k

r
n Zn-O ek

lip

dk ek lJo (’ ;iO )n"
d
k

I/01
Let k be chosen such that (r/d

k < I. Then,

.k+I/p. I/p,I/Pl n
a
k

e
k"--o "

(d
k

r)

Since the left hand side of (3.7) is independent of k, letting k / ", we get

1/1 nEn=0 e r < 1.
n

us

1101
En-N(r) en rnfo(l), as r /

Since, r exp (N(r)log r) @(r ), it nov follows from (3.6)

I/Pl rn+ o(1)N(r)

o

Pl0(1) t(r ).

(3.7)

Since p < p and p is the -order of f, the above inequality contradicts the

definition of -order. Thus, equality must hold in (3.4). This proves the lemua.

n
Pf

PROOF OF THEOREM 2. Since D are univalent in A, from (2.2), we get for

sufficiently large p and 2knp+l-np + I.

1/(np+ k)

a(np+ k)) (3.8>

dk" .d 1/(np+k) P 1/(np+k)
(I + o(I))(- d l=2{(nl-ni_l+l)d(ni-nl_l+l)--.d(2)dk+n

p

Further, we have
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(dk...d
ll(n +k)

P (d (np+1 -rip+ I) ...d
11np+

and

-I/(rip+k) -I/(rip+2)."(dn +k...dI) (d(n +2)..,d(1))
P P

Using these inequalities, (2.5) and (3.8), it follows that, for sufficiently large p,

(np+k)
1/(np+k)

a (3.9)

p+l )/n
2(1+o(I)) -nl-ni-1

I/n i=2 (d(nl-ni-1+I) P

d(n )...d(1)) p
P

M max {log d( ):
P nl-ni_ +I

Since log d(n) is the restriction of a slowly oscillating function on integers, by

(3.1)

log

p+l (nl-nl_)/ni2 d(nl-n i-I+I) p

(d(np)...d(1)) 1/np

p+l_In [iZ=2 (ni-ni-I) log d(nl-ni_
P

n

+) -iz= og d(1)

n Mp+l -log d(np)
P

Consequently, for sufficiently large p,

(n +k) log d(n +k) log d(np+1+1)_p. P

-ogl.Cnp+k) og d(np) n Mp+l
P

-log 2

Again, from the definition of S.O. function

l-lent e,

log d(np) log d(np+ as p+(R).

If

For

and

M
lira sup__ p,,
p + log d(n

P

M is bounded, there is nothing to prove.
p
p > 2, let,

log d(n -n
p p-I

A iog d(np p

+1)

So, let M as
p

M
B "---P
p log d(np)

But as M max {log d(nl-ni_1+l): 2lp}, for each p ) 2, there is some
P

(3.t0)
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p such that M log d(n -nqp’ qp p qp qp-
B A Taking qpP qp

1+1). 8ence

lira sup B llm sup A
P Pp/(R) p+

Now (3.2) follows from (3.10).

COROLLARY. Suppose the conditions of Theorem 2 are satisfied. If as p / ",

log d(np-np_I) o(log d(np))

THEOREM 3. Le__t 0 p I. Le__t {np}v.I_ be a strictly increasing sequence of

non-negatlve integers. Then, there is an entire function h of V-order p such that

Dnh is univalent in A if and only if n-n_ for some p.

PROOF. Suppose p > 0 and {dn}n. is an increasing sequence of positive numbers

such that log d(n) is the restriction of a slowly oscillatlng function on integers and

dl=l. Let,

if J=n for some p

2Pd(np+l)...d(2) (J-n +1 P

hi+l= P

0 otherwise.

Define, h(z)= Zj.0 h z Then, h(z) is an entire function and

o(h) lira sup
k log

k / log

(n +I) log d(n +I)
llm sup P P

p p log 2 + " log(d(n_+l).,,d(2))
P

np
To show that D h given by

n d(n_., + )...d 2 np+k-np+D Ph(z) Zk=0 (np+k-np+l) d(np+-np+l)P’r" .d(2) h(np+k+l)z

is univalent in A, it is enough to prove that

d(np+k+1) ...d(2)

r’kf1(np+k-np+l) d(np+k-np+1).. *d(2) [h(np+k+1)l

d(np+l)...d(2)lh(np+1)[.
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Since p I,

d(np+k+l) .d( 2

r’k. (np+k-np+1) d(np+k-n/1)...d(2 Ih(np+k+l)l

(d(np+k+l)...d(2))
d(np+k- n +l)...d(2)

P

_I Id(np+1) .d(2)) k=1 2-<
2p

d(np+l)...d(2) h(np+l) I.
n

As Dn+lh(o) 0 unless nfn for some p, only D Ph are univalent in A.
P

If o=O then take h+ defined by

hi+1

if J=n for some p.2P+d(np+I)’" "d(2)
(J-np+l) P

0 otherwise

in place of hi+ in the Taylor series of the function h(z).
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