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ABSTRACT. Let R be a ring (not necessarily with identity), N the set of nilpotents,

and n > a fixed integer. Suppose that (i) N is commutative; (ii) If x N and
n n

y N, then x y xy (iii) For a N and b R, if n![a,b] 0, then [a,b] 0,

where [a,b] ab ba denotes the commutator. Then R is commutative. This theorem

generalizes the "xn --x" theorem of Jacobson. It is also shown that above theorem

need not be true if any of the hypotheses is deleted, or if "n!" in (iii) is replaced

by "n".

KEY WORDS AND PHRASES. Commutator, nilpotent, Vandermonde determinant.

1980 AMS SUBJECT CLASSIFICATION CODE. 16A70.

I. INTRODUCTION.

A well known theorem of Jacobson [2] states that a ring R satisfying the identity
n

x x, n > is fixed, is commutative. Such rings, of course, have no nonzero

nilpotents. With this as motivation, we consider the commutativity of a ring
n n

satisfying the condition x y xy for all x E R\N, y R\N, n > is fixed, and

where N is assumed to be commutative. That such a ring R need not be commutative can

be seen by taking

R n= 2.
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This naturally raises the following question: What extra conditions are needed to

guarantee the commutativity of the ground ring R? Here we give one such extra

condition involving commutators. As a corollary of our main theorem, we obtain

Jacobson’s Theorem (quoted above). We also give examples which show that all the

hypotheses of our main theorem are essential.

2. MAIN RESULTS.

Our main result may be stated as follows:

MAIN THEOREM. LetR be a ring (not necessarily with identity), N the set of

nilpotents, and n > a fixed integer,. Suppose that (i) N is commutative; (il) If
n n

x N and y N, then x y-- xy (iii) For a N and b E R, if n![a,b]z0, then

[a,b]=0. Then R is commutative.
2PROOF. Let x e R, x N. Then x N, and hence by (ii),

n x2)n 2n+l n+2
x (x2) x( which implies x x Thus,

(x-xn)n+2 (x-xn) (x-xn)n+l (x-xn)xn+lg(x) O,

n
and hence x x N for all x N. Since, trivially, this is also true if x N,

therefore

n
x- x e N for all x R. (2.1)

Next, we prove that

(n!) [a,b] 0 for some positive integer o, (a e N, b e R). (2.2)

Since N is commutative, by (i), to prove (2.2) we may assume that b N. Let

u a + b, (a e N, b N). (2.3)

We now distinguish three cases.

CASE I. ku e N for some k {l,...,n}.

Since a N and N is commutative by (i), therefore (ku)a a(ku) and hence by

(2.3), k(a+b)a ka(a+b). Thus, k[a,b] 0 and hence n![a,b] 0, which proves (2.2)

in this case.

CASE 2. b + ku N for some k E {l,...,n-l}.

Arguing as in Case I, we see that [b + ku, a] --0. Hence, [b + k(a+b), a] 0,

which implies (k+l)[a,b] 0, k + n, and thus n![a,b] --0. Again (2.2) is proved

in this case.

CASE 3. ku N for k n and b + ku N for k l,...,n-l.
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Recall that b N, [see (2.3)], and ku N for k .....n.
(ku)

n
b-- (ku)bn for k .....n.

Hence by (li),

(2.4)

Similarly, since b N and b + ku N for k l,...,n-l, therefore by (ll) again,

(b+ku)nb (b+ku)b
n

for k I, n-I (2.5)

Setting k I, then k-- 2,..., and finally k n-I in (2.5), we obtain

b
n+l + Alb + A2b + + An_ b + u

n
b b

n+l + ub
n

n-I
A bb

n+l + 2Alb + 22A2b + + 2 n-I + (2u)n b bn+l + (2u)bn

n-1
A bb

n+l + (n-l)Alb + (n-l) 2 A2b + + (n-l) n-I

+ ((n-l)u)n b b
n+l + ((n-l)u)bn, (2.6)

where each A
i

is a sum of terms each of which is a product in which u appears exactly

i times and b appears exactly (n-i) times. Hence, by (2.4) and (2.6), we get

Alb + A2b + + An_l b 0

2Alb + 22A2b + + 2
n-I

An_l b 0

(n-1)Alb + (n-l) 2 A2b + + (n-l) n-!A b 0. (2.7)
n-I

The determinant A of the matrix of coefficients of the system of linear

equations in Alb A2b,...,An_ib in (2.7) is a Vandermonde determinant, and hence

a a product of positive integers each of which is less than n. (2.8)

Moreover, it can be seen that A(AIb) 0. A similar argument also shows that

A(b AI) 0, and hence A[AI,b] 0. Recalling the definition of Ai, we see that

bn-1 bn-2u + bu + ...+b
n-

u,

and hence

0 A[AI,b] A[u,bn].
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Since u a + b, [see (2.3)], therefore the above equation yields

A[a,bn] 0, (a N, b N). (2.9)

Combining (2.9) and (2.1), keeping (i) in mind, we se that

and hence

0 A[a,b-bn] A[a,b] A[a,bn] A[a,b],

A[a,b] 0, (a N, b N). (2.10)

Now, combining (2.10) and (2.8), we obtain (taking into account repeated factors of

A),

(n!) [a,b] 0 for some positive integer

which proves (2.2) in this case also. Thus completes the proof of (2.2).

Returning to the proof of the theorem, note that if o > then (2.2) implies

that

n![a, (n!) b] O,

and hence by (ill), [a, (nt.) O-I b] 0, that is, (nt.)-l[a,b] 0 Continuing

this process, we eventually obtain [a,b 0 for all a g N, b # N. But, since N is

commutative, by (i), therefore,

[a,b] 0 for all a E N, b R. (2.11)

Combining (2.1) and (2.11), we see that

n
x x is in the center of R, for all x in R,

and hence R is commutative, by a well known theorem of Herstein [I]. This proves the

theorem.

COROLLARY I. Le___t R be a ring, N the set of nilpotents., ...and n > a fixed integer.
nSuppose that (1) N is commutative; (ii) If x N, then x x; (iii) For a E N and

b R, if n![a,b] 0, then [a,b] 0. Then R is commutative.

As a further corollary, we obtain Jacobson’s Theorem [2]:

COROLLARY 2. Let R be a ring and suppose n > is a fixed integer such that
n
x x for all x in R. Then R is commutative.

We conclude with the following examples which show that our Main Theorem need not

be true if, in hypothesis (iii), "n!" is replaced by "n", or if any one of the
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hypotheses (i), (ii), (ill) is deleted.

EXAMPLE I. Let

R a,b,c GF(4)

Observe that R satisfies hypothesis (1) of our Main Theorem, and also satisfies

hypothesis (ii) with n 7. But hypothesis (ill) is not satisfied for this value of

n. However, if n! is replaced by n in hypothesis (iii), then R would satisfy this new

hypothesis, (n 7). This example shows that "n!" cannot be replaced by "n" in (iii).

EXAMPLE 2. Let

a,b,c E GF(3)

It is easily checked that R satisfies all the hypotheses of our Main Theorem except

hypothesis (i), but R is not commutative. Hence, (1) cannot be deleted.

EXAMPLE 3. Let R be the ring of quaternions, and let n > be any positive

integer. Note that R satisfies all the hypotheses of our Main Theorem except

hypothesis (ii). Hence, (ii) cannot be deleted.

EXAMPLE 4. Let

i(0 i),R 0,I GF(2) n=2.
0 0 i

It is readily verified that all the hypotheses of our Main Theorem are satisfied

hypothesis (iii). Hence, (iii) cannot be deleted, since R is not commutative.
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