NOTE ON CERTAIN SUBCLASS OF CLOSE-TO-CONVEX FUNCTIONS OF ORDER α

SHIGEYOSHI OWA

Department of Mathematics Kinki University Higashi-Osaka, Osaka 577, Japan

M.K. AOUF

Department of Mathematics Faculty of Science University of Qatar P.O. BOX 2713 Doha-Qatar

M.A. NASR

Department of Mathematics Faculty of Science University of Mansoura Mansoura, Egypt

(Received April 25, 1988)

ABSTRACT. The object of the present paper is to show a result for functions belonging to the class $R(\alpha)$ which is the subclass of close-to-convex functions in the unit disk U.

KEY WORDS AND PHRASES. Close-to-convex of order α , class P(α), class R(α), starlikeness bound. 1980 AMS SUBJECT CLASSIFICATION CODE. 30C45.

1. INTRODUCTION.

Let A denote the class of functions of the form

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n$$
 (1.1)

which are analytic in the unit disk U = $\{z: |z| < l\}$. A function f(z) belonging to the class A is said to be close-to-convex of order α if and only if it satisfies the condition

$$\operatorname{Re}\{f'(z)\} > \alpha \tag{1.2}$$

for some α (0 $\leq \alpha \leq$ 1) and for $z \in U$. We denote by P(α) the subclass of A consisting of functions which are close-to-convex of order α in the unit disk U.

Further, let $R(\alpha)$ be the subclass of A consisting of all functions which satisfy the condition

$$|f'(z) - 1| < 1 - \alpha$$
 (1.3)

for some α ($0 \leq \alpha \leq 1$) and for all $z \in U$.

It is clear that $R(\alpha) \subset P(\alpha)$ for $0 \le \alpha \le 1$. Nunokawa, Fukui, Owa, Saitoh and Seking [1] have showed the starlikeness bound of functions in the class $R(\alpha)$. Also, the starlikeness bound of functions belonging to the class $P(\alpha)$ was given by Fukui, owa, Ogawa and Nunokawa [2].

2. MAIN RESULT.

In order to prove our main result, we have to recall here the following lemma due to Lewandowski, Miller and Ziotkiewicz [3].

LEMMA. Let β be real and $|\beta| < \pi/2$. Let $\phi(u,v)$ be a complex valued function

 $\phi: D \rightarrow C, D \subset C \times C$ (C is the complex plane),

and lrt $u = u_1 + iu_2$, $v = v_1 + iv_2$. Suppose that the function $\phi(u,v)$ satisfies

(i) $\phi(u,v)$ is continuous in D; (ii) $(e^{i\beta},0) \in D$ and $\operatorname{Re}\{\phi(e^{i\beta},0)\} > 0$; (iii) $\operatorname{Re}\{\phi(iu_2,v_1)\} \leq 0$ when $(iu_2,v_1) \in D$ and $v_1 \leq -\frac{1-2u_2\sin\beta+u_2^2}{2\cos\beta}$.

Let $p(z) = e^{i\beta} + p_1 z + p_2 z^2 + \dots$ be regular in the unit disk U such that $(p(z),zp'(z)) \in D$ for all $z \in U$. If

$$\operatorname{Re}\{\phi(p(z), zp'(z))\} > 0 \qquad (z \in U),$$

then $\operatorname{Re}\{p(z)\} > 0$ ($z \in U$).

Applying the above lemma, we derive

THEOREM. Let the function f(z) defined by (1.1) be in the class $R(\alpha)$.

Then

$$\operatorname{Re} \left\{ e^{i\beta} \frac{f(z)}{z} \right\} > 0, \qquad (2.1)$$

where

$$|\beta| < \frac{\pi}{2} - \sin^{-1}(1 - \alpha).$$
 (2.2)

PROOF. It follows from $f(z) \in R(\alpha)$ that

$$\operatorname{Re}\left\{e^{i\beta}f(z)\right\} > 0 \qquad (z \in U) \qquad (2.3)$$

for $|B| < \pi/2 - \sin^{-1}(1 - \alpha)$. Defining the function p(z) by

$$e^{i\beta} \frac{f(z)}{z} = p(z),$$
 (2.4)

we can see that $p(z) = e^{i\beta} + p_1 z + p_2 z^2 + ...$ is regular in U. Taking the differentiations of both sides in (2.4), we have

$$e^{i\beta}f'(z) = p(z) + zp'(z).$$
 (2.5)

It follows from (2.3) that

$$\operatorname{Re}\left\{e^{i\beta}f'(z)\right\} = \operatorname{Re}\left\{p(z) + zp'(z)\right\} > 0.$$
 (2.6)

Setting

$$\phi(u,v) = u + v$$
 (note that $u = p(z)$ and $v = zp'(z)$), (2.7)

we see that

(i) $\phi(u,v)$ is continuous in D = C × C; (ii) $(e^{i\beta},0) \in D$ and $Re\{\phi(e^{i\beta},0\} = \cos\beta > 0;$

(iii) for all $(iu_2,v_1) \in D$ such that

$$v_1 \leq -\frac{1 - 2u_2 \sin\beta + u_2^2}{2\cos\beta},$$

$$\operatorname{Re}\left\{\phi(\operatorname{iu}_{2}, v_{1})\right\} = v_{1}$$

$$\leq -\frac{1 - 2u_{2}\operatorname{sinB} + u_{2}^{2}}{2\operatorname{cosB}}$$

Therefore, the function $\phi(u,v)$ defined by (2.7) satisfies the conditions in Lemma.

Using Lemma, we have

$$\operatorname{Re}\{p(z)\} = \operatorname{Re} \{e^{i\beta} \frac{f(z)}{z}\} > 0$$

which completes the proof of Theorem.

Letting $\alpha = 0$ in Theorem, we have

COROLLARY. Let the function f(z) defined by (1.1) be in the class R(0). Then

$$\operatorname{Re}\left\{\frac{f(z)}{z}\right\} > 0 \qquad (z \in U).$$

REFERENCES

- 1. NUNOKAWA, M., FUKUI, S., OWA, S., SAITOH, H. and SEKINE, T. On the starlikeness bound of univalent functions, <u>Math. Japon</u>., to appear.
- FUKUI, S., OWA, S., OGAWA, S. and NUNOKAWA, M. A note on a class of analytic functions satisfying Re{f'(z)} > α, <u>Bull. Fac. Edu. Wakayama Univ. Nat. Sci.</u> <u>36</u> (1987), 13-17.
- LEWANDOWSKI, Z., MILLER, S.S. and ZLOTKIEWICZ, E. Generating functions for some classes of univalent functions, <u>Proc. Amer. Math. Soc.</u> 56 (1976), 111-117.