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1, INTRODUCTION.

Let D denote the unit disc of the complex plane C nd let Hm denote the

space of bounded analytic functions on D. An analytic function on D is called a

Bloch function if Sup f’(z)l (l-lzl 2 < m. The space of Bloch functions is a
zeD

Banach space with norm

I1’11 If(o)l / su If’(z)l (.-l.12).
zD

A Blooh function is in the little Bloch space 0’ if f’(z) (1-[z[ 2) 0 as [z
1-. An immediate consequence of Schwartz leaa (see for example [2], Lemma 1.2)

is that H C , however it is well known (see section 3 for an explicit example)

that H 0" The main result of this paper is to show that, if f Hm then

e
i8

f’(r (1-r2) 0 for almost all 8 as r 1-.

2. APPROXIMATE IDENTITY.

In this section we establish an approximate identity 8/in to the Poisson

Kernel.

1. Let 0 < r 1, t [ and
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Then

g(r,t) : (l-r2) 3

(l+r2) (I 2r cos t + r2) 2

) (r,t)dt 1.
2

PRCF" Let P (t) 1-r2 n
r 2 + 2 r cos nt be the Poisson

2r cos t + r 1

kernel. As usual let L2 be the Lebese 2-spece on [0,2]. Then,

2 p(r,t)dt
(l-r2)

Pr(t)
_z l+r2 L2

I I + 2 , rn cos nt, + 2 , Pn cos nt
(l+r) 1 1

l-r2 r2n(I+2 )=I
l+r2 1

2. Let # be a complex measure on [-z, ] and suppose the derivative

D#(8) exists for some point 0. Then

p(r, 0-t) d(t) + D(0) s r -.
2z

PRfX)F: The usual approximate identity proof with the Poisson kernel Pr(@-t)
(see for example [1] pae 4) works for f(r, 0-t) as well.

Without loss of generality we may assume that 0 : 0. Let A D(0) and

then

u rei 0) 1 z f(r, 0-t) d(t).

u re
i 0) -A 1 II f(r,t) [d(t) Adt]

2

[f(r,t) [(t) At]
2x -
I j’ ((t) -At) dt
2%
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where #(t) is the function of Bounded Variation associated with #. Note that

the first term tends to 0 s r I-. Fix 0 snd let _< Itl _< x.

Then

I-t (r,tll < (I-r2)3
16r2 sin6/2

Hence for each 6 0,

as r I-, where

u(rei8) A- I 0

(#(t) At) dt T
(t),- (-t) t( -#F dt

2 -6 at 0 2t t

Given 6 O, chose 6 > 0 such that

(t) (-t) A < T for 0 < t _< 6.
t

Then t dt"
2 at0

But then (r,t)
at

l_r2) 3 4r sin t

(l+r2) (1 2r cos t + r2)3

Hence [I6[ _< t (-(r,t))dt
2 at

It (r,t)] + (r,t)dt
2x 0 2x 0

<_ (r,t)dt 6.

2x

Now we are ready to prove the main result of this pper. We may recall that if f

6 Hm then the radial limits, lim f(rei8) f(ei8) exists for almost all 8 and
rl-

that

8) x (l-r2)
2

f(eitf.reI( )dt.
2x 2r cos(8-t) + r
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Taking derivatives with respect to r, we get

e f’ (reI I 1 (rei8) I2(reiS),

where ii (reiS)
1 z -2r

f(eit

2z -z 2r cos(8-t) + r
2 )dt and

i2(rei8 _/_I I (l-r2) (r cos(8-t)) f(eit
z (1 2r cos(8-t) + r2) 2 )dt. Note that

f(ei8) for almost all 8 as r 1-. Also

(l-r) I

12 (l-r) 1 (l-r) (1-r2) (-cos(8-t) + 1)

r (1 2r cos(8-t) + r2)2
f(eit)dt

(l-r)2 Iz (l_r2)- (1 2r cos(8-t) + r2)2
f(eit)dt.

The first term in I2(1-r) is dominated by

r 1-. However the second term of I2(1-r) is

and hence tends to zero as

2( l+r2)
f(r, 0-t) f(e

(l+r) 2 2z

for almost all 8 as r 1- by Leam 2.

it)dt f(ei8)

The Proof is complete.

3. A BLASCHKE PIODLL NOT IN s0"
In this section, for completeness sake we give an explicit example of an bounded

analytic function which is not in 0’
First we state an elementary lemma, whose proof we omit.

3. Let 0 < r < i. Then
x(a) If 0 < x r < 1, then -in (l-x) < 1-r

(b)

(c)

l-x decreases on - < x < -!-1
1-xr r

l+x 1increases on -m < x <
1-xr r

4. Let a and
n 2n

+ with n> 12n
a
n an+
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Then li___m [[
mm n:

for some c.

POOF" Fix m > I. We first show that

in

m+l

For,

in

m+l

in (l-

m+

(1-an)(1 + m
1-a

n m

Then

1- m+l /m ]
em+l m m+

In

m+l

(1- an (1 +Sm
1-

(use Lenna 3 (a) and (b)).

(1 laml 2)
2 1___ < 32.

(l-m) m! 2n-- (m+l m

Now applying Lemma 3 (c) to l+x

Ill

for < n < m.

Thus,
m

n=l

1-m)(l+an l-m)(1+am), we have _<

m

mnfl’m n-l.

m

%- qm n:l anm
by lemma 3 (a),(c).

Hence

m

in

n:l

t,m/n, ]
m

2-< (1-I/m)
tim am n=l n

2

-’-( m+l-am

in

(1-1m) Y. 2n+l

1
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Now Lemma 3 follows.

COROLLARY I. Let b be the Blaschke product with zeros {a n > I}. Then
n

b’(r)(1-r) 0 as r 1-.

POOF- Let c l-
rl-

Then for sufficiently large

Ib{n) -< e In 1-r
n

an+dr _< c dr c In 2.
1-r

n

Hence by LenIaa 4,

lim [b’(r)[ (l-r) O.
r-l-
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