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ABSTRACT. In this paper we calculate the dual of the spaces of distributions L
introduced in [I ]. Then we prove that L is the dual of a subspace of C OR).
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I. INTRODUCTION

Let D’ and S’ be the classical Schwartz’s spaces of distributions in

and denote by L the Laplace transformation. In (Prez-Esteva [I ]) were introduced

spaces La as follows:
PY

La is the subspace of L OR) of functions f with supp f C [a,) andoy loc
e f L2OR), where e (x)=e-Tx. La is a Hilbert space with the inner product
-Y -y oy

I(f,g) e_2fg dx

then we define [a DP[a Dp
DY oY

where is the distributional derivative of order p.

Since Dp La a is bijective, we can copy the Hilbert space structure of Laoy py oY
Laon We have the continuous inclusions
PY

La C Lb for a>b
pY py’

La C La
PY qy, if p < q

Hence for p {0,I,...} the strict inductive limit

L ind lim La
PY a PY

makes sense. Then

L ind lim L ind lim L-p
Y p PY p PY

is also well defined.

In[l] it was studied the spaces of distributions g for which the convolution

f f,g: [ L
Y

is continuous.
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Here we describe the strong dual of L which turns out to be a subspace S
Y 7

of C OR). Then we prove the reflexivity of Sy and conclude that (Sy)’= Ly, which

is the main result of the paper, ll’II
2

will denote the norm of L2OR), y will be

assumed to be a positive constant, and N will be the set of nonegative integers.

2. THE DUAL OF [

DEFINITION I. Let L he the space of all complex measurable functions g in

E 20R for every a E where a,) stands for thesuch that a,)e_yg
characteristic function of [a,). We provide L with the topology given by the

seminorms

m.pa(g lla,)e_yg a

Next we denote by S the subspace of L such that Dnf L for every
Y Y

n N. Define the topology of S by the system of seminorms

pan(g II a,)e_y Dngll
2

a , n E N

It is clear that Ly and Sy are Frechet spaces and since Dng LllocR) for any

n and g Sy, we have that Sy C

LEMMA I. Let L’, then for every p E N, there exists gp L such that

f gpdx, f 6 L(DPf) e-2y o

The sequence {gp}p 6N satisfies

+ 2ygp p 6 Ngp+l -Dgp (2.1)

gpb X[ b,=o)gpa
If gpa is the restriction of gpa to a,=), then gp Da gpa is well defined,

belongs to L and

(DPf) J e_2yf gpdx DPf E L
py

Let 6 D. Since DP+I 6 Lp+ ] L we have
Y PY

for DPf 6 Lbpy’

(DPf) [ e-2yf gpa dx, DPf 6 i
a

PY
b

LaIf a < b, we have L C then
pY py’

(DPf) I e_2yf dx I e 2yf X dxgpb b ,) gpa

which shows that

Hence is determined by go 6 Sy.
PROOF. Fix a 6 and p 6 N. Then 6 (Ly)’ and there exists gpa 6 La

such that
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(DP+I) i e_2ygp+l dx I e_2yDgp dx

]{D(e_2y) + 2y e_2Y}gp dx

+ 2y ><-e_2{Dgp e_2{gp
where <-,’> represents the duality between D and D’. It follows that

or

+ 2ygpgp+l -Dgp

e-2y gp+l -D(e-2y gp)
Hence, every gp belongs to S.

LEMMA 2. Let g 6 S and H be the differential operator defined by
Y

H -D + 2yl. Then the functional

(DPf) I e-2yf H(P)gdx’ f 6

is well defined in L and is continuous.
Y

PROOF. Let f 6 Laoy be such that f Dh with h 6 Loy.
C p converging to f in Lb if b < a.sequence {f 6n n N oy

There exists a

Let

n(x) fn dy

Then f i
b

h) f f and since the inclusion Lb C Lb
n oy’ D’n n o

uous, we have that {n}n6N converges to h in Lo. If follows that

f e_2yh H(g)dx Lim f e_2yn H(g) dx

and

I e_2yf g dx Limf e_27fngdx

On the other hand

e_2.(on tt(g)dx n D(e-2g) dx

-n(B)e-2y(B)g(B) + fn e-2yg dx

But we have the estimate
b

Hence

]g(x) < Ig(b)] + ey(x) ]lb,oo)e_y(Dg Yg)](x-b)

e_2yn H(g)dx e_2yfn g dx

1/2

From (2.2) and (2.3) it follows that

f e_2yfgdx I e_2,h H(g)dx

is contin-

(2.2)

(2.3)

(2.4)

for x > b
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By induction we obtain

; e_2yfgdx f e_2yh H(P)(g) dx

if f DPh and f,h E L
oy

Finally, if DPf Dqh with f,h E L

by (2.6) we have

(P)
e_2yf H (g)dx e_2yh H (q)

(2.6)

and q p, then f Dq-Ph, hence

(g)dx

Thus is well defined and it is clearly continuous.

THEOREM I. The strong dual of Ly is Sy.
PROOF. By lemmas and 2 we know that Ly’ Sy. It remains to prove that the

strong topology L, Ly) coincides with the topology T of Sy. First notice that

is defined by the system of seminorms

"(P) (g)ll a l, p Nqap (g) II x[ ,)_ 2’

Fix a l and p N. Let V {g E Sy: qap(g) I}. Denote by U the unit ball

in La then the set B DPu is bounded in L and hence in L If g Boy’ pY
(the polar of B), then for every f U we have

I e-2yf H(P)(g)dxl I<DPf,
Thus

H (p) )112II
_

a,m) (g <

It follows that B C V and i c B(L’,, Ly). Now, let B be a bounded set in Ly.
Then for some p N, B C L-p and is bounded there (see Kucera, McKennon 2 ).

PY
Hence B C E DPu for some g >0 where U is the unit ball in L-p. Let

oY
(g) < E-I}, then g V implies for f E EU thatV {g Sy: q_p P

<DPf, g>= If e_2yf li(p)(g)dx] <

Then g B, so we proved that V C B. This completes the proof.

COROLLARY I. L is the strong dual of S
Y Y

PROOF. By (Kucera, McKennon 2 ], Theorem 4) we know that L is reflexive.

Hence the corollary follows from Theorem I.
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