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ABSTRACT. While there are various methods of generating Fourier kernels mentioned in
the literature it is not so well recognized that Fourier kernels can be obtained as solutions
of differential equations. In this note we define a class of Fourier kernels, which are
solutions of a k fold Bessel equation.
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INTRODUCTION
While there are various methods of generating Fourier kernels mentioned in the

literature [1,2,3], it is not so well recognized that Fourier kernels can be obtained as

solutions of differential equations. In this note we generate Fourier kernels as solutions of

ordinary differential equations and report some kernels which have not been reported in the

literature before.

Consider the differential equation

D2kf (-1)kf, 0 < x < (R). (1.1)

where D2k d2k
dx-’ k 1,2,3,....

Note that if f(x) is a solution of this differential equation then u(x) f(Ax) satisfies

D2ku (-A2)ku, 0 < x < (R). (1.2)

Now for suitable u(x) and v(x), defined over 0 < x < (R), we may write

I(R)

u(x)(D2kv(x))dx (u(x)v2k-l(x) ul(x)v2k-2(x)
0

+...+ uk-l(x)vk(x))l(R) + (-1)kI: uk(x)vk(x)dx (1.3)
0

where uk(x), denotes the k-th derivative of u(x).

Equation (1.3) implies that if we disregard the contributions of the terms on the right

hand side as x (R), the operator D2k is symmetrical provided u(x) (and v(x)), satisfies the

following conditions:
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Conditions A.

(1) k of the constants u(0), u.l(0),...,u2k-l(0) are zero.

(2) The k constants uil(0), ul(0), uik(0) which are zero are such that no two

il,i,...,ik add up to 2k-1.

It is interesting to note that these are exactly the conditions imposed on the constants

by Guinand [1], though his arguments are quite different. For example, if we consider the

equation

Du + u 0,
and look for the solutions of this equation which are bounded at infinity and which satisfy
the conditions (A) at zero, we arrive at the same functions as those given by Guinand [1].
The possible combinations of conditions (A) i.n this case are:

u u() u() o; u u() u(3) o; u u() u(4) o; u (3)
u(4) o;
u(1) u(2) u(5) 0; u(1) u(3) u(5) 0; u(2) u(4) u(5) 0 and u(3)

u() u() o.
These are precisely the combinations cited by Guinand [1] for the case k 3.

Similarly for other values of k.

2. We now consider a more general equation

the k-fold Bessel equation.

Let

where 8 is a constant and K

and hence

(-1)ku, (2.1)

u v Kv(0X),

is the MacDonald function.

[D’- v’- 1/4]X2 U U,

Then

u 8ku, k 1,2,3,....

Now if we set 8 eimqk,/

then the function

0 <_ m <_ 2k-l,

u(x) q Kv(i eimr/k x), 0 < m < 2k-1

satisfies the differential equation (2.1) above. The general solution of (2.1) is given by
2k-1

Vv,k(x) Z Bm’]’ gv(i eimTr/k x) (2.2)
m=0

Now we look for the solutions which satisfy the following conditions"

Conditions B

(1) Uv,k is bounded as x (R). (BI)

(2) Uv,k(0 U (0) U (0) v,k)(0) 0. (B,)

(3) I0 U,k(AX)Uu,k(PX)dx exists (Ba)

We shall show that the function Uv,k(X), which is the general solution of the differential

equation (2.1), will generate some interesting Fourier kernels for some particular values of k,
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provided Uv,k(X) satisfies conditions B.

In our analysis below, we shall make use of the fact that if Uu,k(X) is a Fourier

kernel then ,
Uv,k(S)Vv,k(1-s) 1, a+ir,- < r < (R), (2.3),

where Uu,k(S denotes the Mellin transform of Uu,k(X), [4]. First we derive some known

results as special cases of the function Uu,k(X).

Let k 1. The general solution (2.2) which is bounded as x (R) is given by

Uv, l(X) B0V K0(ix) + Btvq K,(ix)

vr[A Ju(x) + B Yu(x)],
using the fact that, [5,p.78]

1 --v
Kv(iZ re [i Jr(z) + Yv(z)] (2.4)

The conditions B are satisfied for v > 0, provided B 0. The constant A may now be

obtained from the consideration that if Uv, l(X is a Fourier kernel and Uv, l(S) is its Mellin

tCansform then , ,
V y,l(S) Vy,l(l-’s

In this case this condition gives A I, so that

Uv,lCX) VCf Jr(x), v > O,

is a Fourier kernel, the well known Hankel kernel. Now once the kernel is obtained from

these conditions, we may extend the values for v (for which it is a Fourier kernal) from

other considerations. We may, for example, consider all values of v for which the Mellin

transform exists at 1/2. In this case this gives Uv, l(X as a Fourier kernel for v > -1.

Another known kernel can be obtained by setting k 2. In this case the general
solution of equation

X2 U U

is given by

Uv,2(x) .--. Bm V Kv(i e x) (2.5)
m=0

For this solution to be bounded as x (R), B1 0 and using (2.4), we may write (2.5) in

a more familiar form as

Uv,2(x) v[AJv(X + BYvCx + CKv(x)] (2.6)

where Jr’ Yv and Kv are the usual Bessel functions of order v, and A,B,C are suitable

constants. Now we equate the coefficients of xv and x-v of the bracketed expression in

(2.6) above to zero, so that Uv,2(x) satisfies conditions B for 0 < v < 1. This gives,

A / B cot vr- C cosec vr 0

-B cosec vr + , C cosec vr O.

Solving the above system we obtain

A C tan 1/2 vr and B

Hence for 0 < v < i,
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To evaluate the unknown C, we make use of the functional equation,
U//,2(s U//,2(l-s) I. (2.7)

which Uv,2(x satisfies if it is to be a Fourier kernel.

Now from the Mellin transforms of J//, Y// and K//, [6] the Mellin transform of U//,2(x is

given by,

It is an easy matter to see that (2.7) is satisfied if

C 2 cos 1- w"

and we have,
2Uv,2Cx) v[sin1/2vr Jr(x) + cos 1/2wrCYv(x + Kv(x)l.

This function is the Fourier kernel given by Nasim [3]. It is to be noted that this kernel

once found is seen to be a Fourier kernel for -3 < v < 3.

Next we derive new and more complex Fourier kernels, using a similar procedure.

Now set k 3, and in this case the general solution of the differential equation

//2-- .3D x2J u =-u,

is given by
5

U//,3(x) Z Bmv/ K//(i eimr/3x).
m=0

In order that the solution be bounded as x (R), B B 0 and again using (2.4), we

write, more conveniently,

Vv,2(x v[A Jv(x)+BYv(x)+C(Jv(eir/3x) + iYv(eir/3x))
+ C(Jv(e-ir/3x) iYv(e-ir/3x))] (3.1)

Here U denotes the complex conjugate of C. We now equate the coefficients of xV,x-v and

x-v+2 of the bracketed expression in (3.1) to zero and observe that in doing so, we satisfy
the conditions B for 0 < v < 1. This gives us the system

v/3 v/3A + B cos wr + C(e" + (cot wr)e"
.v/3 .v/3+ C(e-" -i(cot vr)e-" 0

cosec vr(B + iCe-" iUe" 0

cosec vr(a + iCeir(2-v)/3 iUe-ir(2-v)/3) 0

Solving the above system, we obtain

iv+1/2)
A a (cosec vr)(2 sing- v) cos wr), S a; C ae

a, is a constant. Hence, for 0 < v< 1, (3.1) gives,

where
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U,,3(x [cosec /r.(2 sin+- /)- cos b,r)J,(x) + Yv(x)

(3.2)

a may again be calculated from the consideration that if U,,3(x is a Fourier kernel then it

satisfies the functional equation

U,3(s)U,3(1--s i. (3.3)

From the Mellin transforms of ,/ J(x) and Y,(x), [6] and after considerable

simplification, we find that,

) )]+ 2 cosec .(sms -cos

1 1 +)(esin 1+4)- 1)
a 2s- r( + s+)sin (y +

r(- s+)ig sin(- s+) sinr

And equation (3.3) is satisfied provided
sin

and the resulting function U,,3(x given by (3.2) is now a Fourier kernel. Once again one

can extend its range to -3 < , < 5. And finally, we consider the case k 4. The

general solution of the equation (2.1) is, in this case,

U,4(x) E BmV Ku(ielx)
m=0

In order that tMs be bounded as x , we may again write the solution as

U,4(x [AJy(x) + BY(x) + CK(x) + D(Jy(eir/4x) + iY(ei/4x))
+ (Ju(e-i/4x)- Y(e-i/4x))] (3.4)

Equating the cfficients of the terms x,x+2,x-y and x-+2 in the bracket eression
in (3.4) to zero respectively, we obtn the following system:

_i r

A + B cot yr-C cosec r + De(l+i cot y) + e (14 cot r) 0

A + B cot yr + C cosec r + De (l+i cot ) + e (1-i cot yr)

-i r

cosec B C + iOe -ie ) 0

cos De
i-u+2)

=0

This gives
A av cosec u (sin u1/4)(1 + cos ur); B -a.,f sin ;
C -a cos u; O iae

i2u+l)

where a is some constant. With these values of the coefficients, U,4(x satisfies the

conditions B for 0 < , < 1. The unknown a can now be calculated from the fact that
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Uv,4(s Uv,4(1--s 1. (3.5)

After much tedious work, one finds that

a sin sin s+ )

-cos- sin vr + V sin vr cos (s + )]
+ +

F(1/2 - 1/2s +  )sin; + 1/2)
sin - cos- sin s+v+ 1/2)*

* sin;(s-v + 1/2)cos s+- )cos (s-v- ).
and (3.5) is satisfied if

Thus Uu,4(x is now established as a Pourier kernel for 0 < u < 1, with

A sec l+cos r)" B in C - cos and D cos

. e (2v+3). Again Uv,4(x is seen to be a Fourier kernel for-5 < v < 5, as wen. We

believe that the kernels Uu,3(x and Uu,4(x are new and are being reported for the first

time in literature.

We now note some special cases of the kernels Uv,3(x and Uv,4(x), which are

combinations of exponentials, sine and cosine functions.

Examples are:

U1 (x) J (2 e
3,3

U x 1
1 (x)= (e- cos(x- )-cos(x + ))
3,3

u (x) 1 [
3,3

x 1 sin(x ;) cosCx + )1/ ) / s,n) +

U_ 1/2,4(x) 4[cos x- sin x- 2 (cos2 ) e-x -4 cos sin( ) e V]
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3 Cx)
,4

[cos x + sin x + xl-(cos x sin x) 2V sin2 (1 -I- x.le-X
x

x-4 sin e qr’2(xl-sin ( + )+ sin(- ))]

U 3 (x) 1 [sin x- cos x + cos x + sin x)- 24 (sin2)(1 + x-,4
x

-4 sin e4r(sin( + )-
It is interesting to note that for k 3, for example, while conditions B are satisfied only
when 0 < v < 2, other conditions which are various cases of conditions A, may be satisfied
for other values of v. Thus, for instance; it is easy to verify that, with Uv,3 as calculated

above:

,o I io-- o o o o o o
,3 ,3 , ,3 ,3

U( (o)
--,3 r2,3 2,3 ,3 ,o ,3

U? (0)= U (0) U.4 (0)= 0; U (0) o, 3 .,3(0) 0.
,2,3

All these are examples of conditions A at x 0.
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