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ASTRACT. It is shown that a ring homomorphlsm on H(G), the algebra of analytic

functions on a regular region G in the complex plane, is either linear or conjugate

linear provided that the ring homomorphism takes the identity function into a
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I. INTRODUCTION.

An operator M on a commutative algebra A is called a rlmg hoorphlsm if for all

x,y e A, M(x+y) M(x) + M(y) and M(xy) M(x)M(y). Throughout thls paper G denotes a

region, i.e., a connected open set in the complex plane, H(G) denotes the algebra of

analytic functions on a region G in the complex plane equipped wlth the topology of

uniform convergence on compact subsets of G, M denotes a nontrlvlal ring homomorphlsm

on H(G), and I denotes the identity function on G. A region G in C is called

if G interior (closure G). The rationals, reals and complex numbers are denoted by

Q, R, and C respectively.

If N is a maximal ideal in H(G) then the quotient algebra H(G)/N is isomorphic

(as an algebra) to C if and only if N is the kernel of a linear homomorphlsm.

Henriksen [I] has shown that H(G)/N is isomorphic (as a ring) to C where G=C and the

maximal ideal M is not closed. Thls implies that there exist discontinuous

homomorphisms from the ring of entire functions onto C.

In this paper we show that if G is a regular region in C and a ring homomorphlsm

M on H(G) takes the identity function I to a non-constant function, then M is

necessarily continuous. Essentially we prove that homomorphlsms under consideration

preserve constants. However, the results of this fact can be obtained by the

techniques used in [2] and [3] except in the case G C.
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If M is a ring homomorphism on H(G) then the following assertions are equivalent:

1) M is continuous,

2) either M(k) k for all k e C or M(k) k for all k e C,

3) M is either linear or conjugate linear,

4) there exists h E H(G) with h(G)c G such that M(f) fob for all f H(G)

or there exist h H(G) with h(G) cG such that M(f) fob for all f E H(G).

The implications 4 ffi=> I) ==> 2) ==> 3) are trivial or easy to prove; 3) ==> 4) is the

content of Lemma 2.1.

We show that a rlng homomorphism M on H(G) which takes the identity function to a

non-constant function is necessarily linear or conjugate linear using Nienhuys-

Thiemann’s theorem [4] which states that given any two countable dense subsets A and B

of R there exists an entire function which is real valued and increasing on the real

llne R such that f(A) B. In Section 2 we give some lemmas and a theorem of Nienhuys

and Thiemann. In Section 3 we prove the following main theorem.

THEOREM I.I. Let G be a regular region in C and let M be a ring homomorphlsm on

H(G) such that M(I) is not a constant function where I is the identity function. Then

M(i) +/-i Further

a) if M(i) i then M is linear,

b) if M(1) -i then M is conjugate linear,

2. LEMMAS.

The following lemma is well known and we give the proof for the sake of

completeness.

LEMMA 2.1. Let M be a ring homomorphlsm on H(G). If M is linear then there

exists a h e H(G) with h(G) cG such that M(f) fob for all f H(G).

PROOF. Let M(I) h and z0E G. We claim that h(z0) G. Suppose not, then

(I- h(zo)) (.
i_ h(zo

)=

Applying M on both sides and evaluatlng at z0 with the observation that

M(h(zo)) h(z O) we obtain

0-- (M(I)(z O) -h(zo)) M(
I h(zo)) (z O)

M(I -h(zo))(z O) M(.
I _h(zo) (Zo)

M(1)(z o)

which is a contradiction. Since z
0

is arbitary we have h(G)cG.

Since h(zO) e G we have
f f(h(zo)
I h(zO)

f f(h(zo)O (I h(zo))

e H(G) and

f f (h(zO)
I h(zO)

Appllng M on both sides and evaluating at z0 we obtain
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M(f)(z0) M(f(h(z0)))(z0) f(h(z0)

Since z0 is arbitrary the result follows.

LEMMA 2.2. Let G be a regular region in C and M be a ring homomorphism on H(G)

with M(1) i. If M(I) h is not a constant function then h(G)c G.

PROOF. Since M is a nontrivial ring homomorphism it is easy to show that

M(,) e for all e e Q. Since M(1) i we have M( + 18) + 18 where

8 e Q. Let z0e G such that h(z0) e Q + iQ. Just as in the above lemma it is easy to

show that h(z 0) e G. Since h is not a constant function we have h(z0) e G for a

dense set of z0 in G and since h(G) is open we have h(G) c interior(closure G) G.

Let K e Q. Denote by % the set of all entire functions which map Q + ik into Q

except possibly for one point of Q + ik and also denote by EM the class of entire

functions whose restriction to R is a real monotonically increasing function. The

proof of Lemma 2.3 follows the proof of the following theorem of Nienhuys & Thlemann

[4].

THEOREM 2.1. Let S and T be countable everywhere dense subsets of R, let p be a

continuous positive real function such that lim t-np(t) for all n N and let

f0e EM. t

Then there exists a function f e EM such that

i) f is strictly increasing on R and f(S) T,

LEMMA 2.3. Let k Q, 8 e R and e Q + ik. Then there exists an entire

function f H
k such that f(e) 8 and f(Q + ik) {8} UQ.

PROOF. In Nienhuys and Thiemann’s Theorem [4] take S Q and T {8}U Q.

Let Xl, x2, be an enumeration of Q. Then as in the proof of this theorem there

exists an entire function g such that g(x 1) 8 and g(Q) {8}UQ. Let x ik and

h(z) z ik. Then f goh is the desired function.

3. PROOF OF THE MAIN THEOREM.

It is easy to see that M is linear over the field of rational numbers and hence

we have M(-I) M( i 2) M (i)
2
which implies M(1) ei We prove here only

Part a) of the theorem and the proof of Part b) follows similarly.

Since h M(I) is a nonconstant analytic function on G, h(G) is a nonempty open

set in C and by Lemma 2.2, h(G) cG. Hence there exists k e Q such that

S (R + Ik) D h(G) has an interval parallel to real axis. Let f e H(G) and

h(z 0) e (Q + Ik) D G. Then applying M on both sides and evaluating at z0 in the

following

we obtain

f f(h(z0)) (I h(z 0)) ("

M(f f(h(z0))) (z0) 0

f f(h(z0)
I h(zO)

for all z 0 in G such that h(z0) e Q + ik. Thus we have
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M(f)(z O) M(f(h(zo)))(z O) for all f H(G) and for all h(zO) Q + ik.

(I)

Since a function f in H
k takes Q + ik into rationals except for one point of Q + ik,

we obtain M(f(h(zo))) f(h(zo)) whenever h(zO) is in (Q + ik) 0 G. Since f is

analytic we obtain

M(f) foh, for all f Hk. (2)

For a given 8 e R and each h(z0) in Q + ik, by Lemma 2.3 there exists an entire

function in H
k

such that f(h(z0)) 8- Substituting this in (1) on the one hand we

obtain

M(f)(zO) M(8)(zO)

and evaluating (2) at z 0 on the other we obtain

M(f)(z0) foh(z0) f(h(z0))= 8

Thus we obtain from the above two relations that

M(8)(z 0) 8 for all Zoe h
-I (Q + ik) 0 G.

Since M(8) is analytic we have M(8) 8. Thus we have M(k) k for all k C. This

implies M is linear.
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