A NOTE ON COMPLEX L1-PREDUAL SPACES

MRINAL KANTI DAS

Department of Mathematics University of Nairobi Box 30197 Nairobi, Kenya

(Received May 11, 1988 and in revised form December 5, 1988)

ABSTRACT. Some characterizations of complex L₁ -predual spaces are proved.

KEY WORDS AND PHRASES. Upper envelope. 1980 AMS SUBJECT CLASSIFICATION CODE. 46899

1. INTRODUCTION.

The aim of this note is to give some characterizations of complex L_1 -predual spaces. These are mostly complex analogous of the results proved by Lau [1]. Existing results that we need are given in §2 and the main results in §3.

Throughout the paper, we shall take V to be a complex Banach space, K its dual unit ball which being convex and compact in the w*-topology has a non-empty set of extreme points $\partial_e K$. For real valued bounded function f on K, \hat{f} stands for its upper envelope. We shall write $\Gamma = \{z \in \mathbb{C} : |z| = 1\}$. By $A_O(K)$ we shall mean the set of continuous affine functions f on K which are Γ -homogeneous i.e. $f(\alpha x) = \alpha f(x)$ for all $x \in K$ and all $\alpha \in \Gamma$.

NOTATION. If f is a semi-continuous function on K, then we use the notation Sf to mean

$$Sf(x) = \frac{1}{2} \int_{-\pi/2}^{\pi/2} \cos\theta f(xe^{i\theta}) d\theta$$

2. SOME USEFUL RESULTS.

In what follows we need the following results. THEOREM 2.1. For a complex Banach space V, the following are equivalent: (i) V is L_1 -predual.

(ii) If g is 1.s.c. concave function on K, such that

$$\sum_{k=1}^{n} g(\zeta_{k} x) > 0 \text{ whenever } \zeta_{k} \in \Gamma, \ (k = 1, 2, 3, ..., n),$$

 $\sum_{k} \zeta_{k} = 0$, then there is an a $\epsilon A_{\alpha}(K)$ such that g>Re a on K.

(iii) If h is a u.s.c. convex function on K, such that even $Sh(x) \leq 0$ for x ϵ K, then there is an a ϵ A₀(K) such that h \leq Re a on K.

(iv) For u.s.c. convex function g on K,

$$\hat{g}(0) \leq \sup \{ \sum_{k=1}^{n} \alpha_{k} g(\zeta_{k} x) : x \in K, n \in \mathbb{N}, \alpha_{k} > 0, \\ \sum_{k=1}^{n} \alpha_{k} = 1, \zeta_{k} \in \Gamma, \sum \alpha_{k} \zeta_{k} = 0 \}.$$

The equivalence of (i) and (ii) is due to Olsen [2] while that of (i), (iii), (iv) is due to Das [3] and Roy [4]. The inequality in (iv) is in fact an equality since the reverse inequality follows from the fact the $g < \hat{g}$ and that \hat{g} is concave. The following result is due to Olsen [5].

THEOREM 2.2. For a complex Banach space V, the following are equivalent:

- (i) V is L_1 -predual with $\partial_{\mu} K \cup \{0\}$ closed.
- (ii) If f is a continuous Γ -homogeneous function on K, then there is a v ϵ V such that $f|_{\partial_{\alpha}K} = v|_{\partial_{\alpha}K}$.

3. MAIN RESULTS.

This section contains the main results.

THEOREM 3.1. A complex Banach space V is L, -predual iff

 $\hat{f}(0) = \frac{1}{2} \sup \{Sf(x) + Sf(-x) : x \in K\}$. for all u.s.c. convex functions f on K. PROOF. "If" - part.

Let us suppose that for u.s.c. convex functions f on K, $\hat{f}(0) = \frac{1}{2} \sup \{Sf(x) + Sf(-x) : x \in k\}$. We put

$$\alpha = \sup \left\{ \sum_{k=1}^{n} k^{f}(\zeta_{k}x) : x \in K, n \in \mathbb{N}, \alpha_{k} > 0, \right.$$
$$\sum_{k=1}^{n} \alpha_{k} = 1,$$

Then clearly $f(x) + f(-x) \le 2\alpha$ for $x \in K$. By linearity and canonical positivity of S, $Sf(x)+Sf(-x) \le 2\alpha$ for all $x \in K$. Then by the hypothesis $\hat{f}(0) \le \alpha$, so that by Theorem 2.1 (iv), v is L₁ -predual.

 $\zeta_{\mathbf{k}} \in \Gamma, \Sigma \alpha_{\mathbf{k}} \zeta_{\mathbf{k}} = 0 \}.$

"Only if" -part.

Let V be L_1 -predual. Then by Theorem 2.1 (iv),

$$\hat{f}(0) = \sup \left\{ \sum_{k=1}^{n} \alpha_{k} f(\zeta_{k} x) : x \in K, n \in \mathbb{N}, \alpha > 0 \right\}$$

$$\sum_{k=1}^{n} \alpha_{k} = 1, \zeta_{k} \in \Gamma, \Sigma \alpha_{k} \zeta_{k} = 0 \right\}.$$

We put $b = \frac{1}{2} \sup \{Sf(x) + Sf(-x) : x \in K\}$. Since f is u.s.c. convex and Sf(x) + Sf(-x) < 2b for all x $\in K$, we apply Theorem 2.1 (iii), to the functions f-b to get $a_o \in A_o(k)$ such that f-b \leq Re a_o . But Re $a_o + b \in A(K)$, so that $\hat{f}(0) \leq b$. Now $\hat{f}(0)$ being real constant and S being linear and canonically positive

$$b > \hat{f}(0) > \frac{1}{2} \{ f(x) + f(-x) \}$$

which yields b > $\hat{f}(0)$ > $\frac{1}{2}$ { Sf(x) + Sf(-x) }. Thus b > $\hat{f}(0)$ > $\frac{1}{2}$ sup {Sf(x) + Sf(-x): x $\in K$ } =b; the theorem is thus proved.

REMARK. The "if" part is proved by Roy [4] in a method quite different from ours, but he has failed to prove the converse and has kept the question open.

PROPOSITION 3.2. Let V be a complex L_1 -predual space. If $X \subseteq \partial_e KU\{0\}$ is closed such that ox $\in X$ whenever $x \in X$, $\alpha \in \Gamma$, then every continuous f:X + C with $f(\alpha x) = \alpha f(x)$ can be extended to an $\hat{f} \in A_{\alpha}(K)$.

PROOF. As X is compact, Re f(x) attains infimum c(say) on X. Clearly $c \le 0$, since f(-x) = -f(x). We define a real-valued function F on K by

Then F is u.s.c. and convex on K. Let us take $\zeta_{L} \in \Gamma$, k=1,2,...n such that $\Sigma \zeta_{L} = 0$.

If
$$\zeta_k = \exp(i\theta_k)$$
, $0 < \theta_k < 2\pi$, then $\sum_{k=1}^n \cos \theta_k = \sum_{k=1}^n \sin \theta_k = 0$. When $x \in K \setminus X$,

$$\begin{split} & \Sigma (\zeta_{k} x) \leq 0 \text{ and when } x \in X, \quad \Sigma F(\zeta_{k} x) = \Sigma \{\cos \theta_{k} \operatorname{Re} f(x) - \sin \theta_{k} \operatorname{Imf}(x)\} = 0. \quad \text{Thus for} \\ & \text{all } x \in K, \quad \Sigma F(\zeta_{k} x) \leq 0. \text{ Hence by Theorem 2.1(ii), there is an } \widehat{f} \in A_{O}(k) \text{ such that} \\ & F \leq \operatorname{Re} \widehat{f}. \qquad \operatorname{Let} x_{O} \in X; \text{ then } \operatorname{Re} f(x_{O}) \leq \operatorname{Re} \widehat{f}(x_{O}) \text{ and } \operatorname{Re} f(-x_{O}) \leq \operatorname{Re} \widehat{f}(-x_{O}) \text{ which} \\ & \text{combined together give } \operatorname{Re} f(x_{O}) = \operatorname{Re} \widehat{f}(x_{O}). \quad \operatorname{Again } \operatorname{Re} f(ix_{O}) \leq \operatorname{Re} \widehat{f}(ix) \text{ and } \operatorname{Re} f(-ix_{O}) \\ & \leq \operatorname{Re} \widehat{f}(-ix_{O}) \text{ together give } \operatorname{Im} \widehat{f}(x_{O}) = \operatorname{Im} \widehat{f}(x_{O}). \quad \operatorname{Thus} f(x_{O}) = \widehat{f}(x_{O}). \quad \operatorname{Hence} \widehat{f} \text{ is the} \\ & \text{required extension.} \end{split}$$

THEOREM 3.3. A Banach space V is L_1 -predual with $\partial_e K \cup \{0\}$ closed iff every continuous function f: $\partial_e K \cup \{0\} \rightarrow C$ with f(αx) = $\alpha f(x)$, $\alpha \in \Gamma$ can be extended to an f $\in A_0(K)$.

PROOF. "Only if" part.

Proof of this part is almost similar to that of Theorem 3.2 and is left out. In fact we can define an F as

$$F(\mathbf{x}) = \begin{cases} \operatorname{Re} f(\mathbf{x}), \ \mathbf{x} \in \partial_{\mathbf{e}} K \cup \{0\}, \\ \\ \operatorname{Inf} \{\operatorname{Re} f(\mathbf{y}): \ \mathbf{y} \in \partial_{\mathbf{e}} K \cup \{0\}, \ \mathbf{x} \in K \setminus \partial_{\mathbf{e}} K \cup \{0\}, \end{cases}$$

which is u.s.c. convex and satisfies all the conditions of Theorem 2.1(ii).

```
"If" part.
```

Suppose that the extension property holds. To prove that V is L_1 -predual with $\partial_{\rho} k \cup \{0\}$ closed, we shall show that Theorem 2.2(ii) holds.

So let h be a Γ -homogeneous continuous function on K and let f=h $\frac{1}{2}$ K.

Then $f(\alpha x) = \alpha f(x)$ for all $\alpha \in \Gamma$ and for all $x \in \partial_e K$. So there is a $v \in V$ such

that $v|_{\partial_{e}K} = f$, that is, $v|_{\partial_{e}K} = h|_{\partial_{e}K}$. This completes the proof.

REMARK. This theorem is comparable with a characterizing result for Bauer simplex that every continuous function on $\partial_{\mu}K$ can be extended to a function in A(K).

REFERENCES

- LAU, KA-SING, The Dual Ball of Lindenstrauss Space, <u>Math. Scand.</u> <u>33</u>, (1976), 323-337.
- OLSEN, G.H., Edward's Separation Theorem for Complex Lindenstrauss Space Math. Scand 36, (1976), 97-105.
- DAS, M.K., On Complex L₁ -predual Space, <u>Internat.J. Math. & Math. Sci.</u> 10, (No. 1), (1987), 57-61.
- ROY, A.K., Convex Functions on the Dual Ball of Complex Lindenstrauss Space, <u>J.</u> Lond. Math. Soc. 20, (1979), 529-540.
- OLSEN, G.H., On Classification of Complex Lindenstrauss Space, <u>Math. Scand.</u>, 35, (1975), 237-258.