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-predual spaces are proved.

1. INTRODUCTION.

The aim of this note is to give some characterizations of complex L -predual

spaces. These are mostly complex analogous of the results proved by Lau [I].

Existing results that we need are given in 2 and the main results in 3.

Throughout the paper, we shall take V to be a complex Banach space, K its dual

unit ball which being convex and compact in the w*-topology has a non-empty set of

extreme points @ K. For real valued bounded function f on K, stands for Its upper
e

envelope. We shall write r {z e C: Izl I}. By A (K) we shall mean the set of
o

continuous affine functions f on K which are r -homogeneous i.e. f(x) (If(x) for all

x e K and all c r.
NOTATION. If f is a semi-continuous function on K, then we use the notation Sf to

mean

12
Sf(x) cosO f(xeiO)do

-/2

2. SOME USEFUL RESULTS.

In what follows we need the following results.

THEOREM 2.1. For a complex Banach space V, the following are equivalent:

(i) V is L -predual.

(ll) If g is l.s.c, concave function on K, such that

n. g(%x) )0 whenever %e r, (k 1,2,3,...,n),
k=l
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then there is an a e A (K) such that g)Re a on K.
o

(lii) If h is a u.s.c, convex function on K, such that even Sh(x) 0 for

x K, then there is an a E A (K) such that h Re a on K.
o

(iv) For u.s.c, convex function g on K,

n
(0) sup{ kg(kX): x E K, n IN, k ) 0,

kffil
n

k=l

The equivalence of (i) and (ii) is due to Olsen [2] while that of (i), (iii),

(iv) is due to Das [3] and Roy [4]. The inequality in (iv) is in fact an equality

since the reverse inequality follows from the fact the g 4 and that is concave.

The following result is due to Olsen [5].

THEOREM 2.2. For a complex Banach space V, the following are equivalent:

(i) V is L -predual with BeK U{0} closed.

(ii) If f is a continuous F-homogeneous function on K, then there is a v e V

such that f[ K V[ K"
e e

3. MAIN RESULTS.

This section contains the main results.

THEOREM 3. I. A complex Banach space V is L -predual if f

(0) sup {Sf(x) + Sf(-x) x K}. for all u.s.c, convex functions f on K.

PROOF. "If" part.

Let us suppose that for u.s.c, convex functions f on K,

(0) - sup {Sf(x) + Sf(-x) :x k}. We put

n
sup [ kf(x) x e K, n e]q, k)0,

k--I
n

k=l

Then clearly f(x) + f(-x) (2 for x c K. By llnearlty and canonical posltlvlty of

S, Sf(x)+Sf(-x) 2 for all x e K. Then by the hypothesis (0) ( , so that by

Theorem 2.1 (iv), v is L -predual.

"Only if" -part.

Let V be L -predual. Then by Theorem 2.1 (iv),

n
(0) sup r. kf(kX): x e K, n IN, 0

kffil
n

k=l
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We put b sup {Sf(x) + Sf(-x) :x E K}. Since f is u.s.c, convex and

Sf(x) + Sf(-x) 2b for all x e K, we apply Theorem 2.1 (ill), to the functions f-b

to get a e A (k) such that f-b Re a But Re a + b e A(K), so that (0) b. Now
o o o o

(0) being real constant and S being linear and canonically positive

b ) (0) )1/2 {f(x) + f(-x)}

which yields b )(0) )I/2 Sf(x) + Sf(-x)

Thus b )(0) ) sup {Sf(x) + Sf(-x): x e K} =b; the theorem is thus proved.

REMARK. The "if" part is proved by Roy [4] in a method quite different from ours,

but he has failed to prove the converse and has kept the question open.

PROPOSITION 3.2. Let V be a complex L -predual space. If Xc KU{O} is closed
e

such that x X whenever x E X, e F, then every continuous f:X with

f(ux) uf(x) can be extended to an e A (K).
o

PROOF. As X is compact, Re f(x) attains inflmum c(say) on X. Clearly c O,

since f(-x) =-f(x). We define a real-valued function F on K by

/ Re f(x), x X,
F(x) IC x K\X.

Then F is u.s.c, and convex on K. Let us take r, kffil,2,...n such that .= O.

n n
If exp(i%), 0 %< 2w, then k__Zl cos % k=El sin % O. When x e K\X,

ZF(x) 0 and when x e X, ZF(x) Z{cos %Re f(x) -sin %Imf(x)} 0. Thus for

all x K, ZF(x) 0. Hence by Theorem 2.1(Ii) there is an e A (k) such tat
o

F Re . Let Xoe X; then Re f(Xo Re (Xo and Re f(-Xo Re (-xo) which

combined together glve Re f(x Re (Xo). Again Re f(ix Re (ix) and Re f(-ix
o o o

Re f(-iXo together glve Im(xo) Im(Xo). Thus f(Xo (Xo)" Hence is the

required extension.

THEOREM 3.3. A Banach space V is Ll-predual with K U {0} closed Iff everye
continuous function f: 8 K U{0} C with f(x) f(x), s e r can be extended to an

e
f e A (K).

o
PROOF. "Only if" part.

Proof of this part is almost similar to that of Theorem 3.2 and is left out. In

fact we can define an F as

=Re f(x), x E eK U {0},

F(x)

Inf {Re f(y): y e 8 K O {0}, x e K\8 K O {0},
e e

which is u.s.c, convex and satisfies all the conditions of Theorem 2.1(il).
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"If" part.

Suppose that the extension property holds. To prove that V is Ll-predual
k U {0 closed we shall show that Theorem 2.2(Ii) holds.with

e
So let h be a r -homogeneous continuous function on K and let f-hl_ K.

Then f(ax) af(x) for all = r and for all x E K. So there is a v V such
e

that vl K f’ that is, vl k h[ K" This completes the proof.
e e e

REMARK. This theorem is comparable with a characterizing result for Bauer simplex

that every continuous function on K can be extended to a function in A(K).
e
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