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ABSTRACT. A subring MF of the field of Mikusiski operators is constructed as a

countable union space. Some topological properties of MF are investigated. Then, the

product of an infinitely differentiable function and an element of MF is given and is

used to investigate operational equations with infinitely smooth coefficients.
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I. INTRODUCTION.

The theory of generalized functions has been used successfully in solving

problems in classical analysis as well as in simplifying the theory of differential

equations (Mikusifski [I], Zemanian [2,3]). In the field of Mikusiski operators, the

inability to define a suitable product of a function and an operator, see Stankovlc

[4], has had a limiting effect. For example, the theory and applications of ordinary

differential equations have been restricted to differential equations having constant

coefficients. In this note we will confine ourselves to the field M of Mikusldski

operators [I]. We will study a subring MF of Mikusifski operators in which the

product of an infinitely smooth function and an operator in MF can be suitably

defined. In Section 2 the construction of MF and a convergence in MF are studied.

Then in Section 3, it is shown that an operational equation with infinitely smooth

coefficients has only the classical solution. Some examples are then given to show

that this is not the case if singularities are introduced.

2. THE CONSTRUCTION OF MF AND CONVERGENCE.

The ring of continuous complex-valued functions on [0,(R)), denoted by C, with

t
addition and convolution ((f*g)(t) I f(t-u)g(u)du) has no zero divisors. The

quotient field of C is denoted by M an is called the field of Mikusiskl operators.

A typical element x of M, called an operator, is written as x f/g, where f,g c C.
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The integral operator is the function defined as for t ; 0 and 0 for t < 0. The

t

integral operator has the property that, for all f E C, (4*f)(t) f(u)du. The
0

inverse of 4, denoted by s, is called the differentiation operator.

will denote 4*4*4* "4 (k terms), while 0
(k)

will denote the kth derivative

of 0"

For k 0,1,2,..., let Mk {x E M: 4k*xEC}. By endowing MK with the topology

induced by the countable family of seminorms

(k,m(X) sup{l(4k*x)(t)l: 0 4 t 4 m} for m 1,2,... Mk is a Frchet space.

Clearly, x x in Mk if and only if for each m > 0, 4k*x 4k*x uniformly on [0,m].
n n

MkLet MF be the countable union space U That is, x is an element of MF if x
k=0

is an element of Mk for some k. Also, a sequence {xn} in MF is said to converge to an

M
k

element x in MF if for some some k, x ,x E n=l,2 ...and {xn} converges to x in the

topology of Mk. Since each Mk is complete, MF is sequentially complete. For a more

detailed discussion of countable union spaces see [2].

Even though M is considerably larger than MF, MF contains many of the important

operators needed for applicatlons. For, by identifying the locally integrable

function f wlth the operator 4"f/4, the collection of locally integrable functions can

be identified with a subrlng of MF. Moreover, MF contains all rational expressions in

s.

We state without proof two lemmas.

LEMMA 2.1. Let {0n} be a sequence of positive functions such that:

(1) 0n(t)dt=l for all n and (il) supp 0nO_ [0,En], where n 0

(supp 0n is the closure of the set on which 0n is not zero). Then for f E C,and for

each m > 0, the sequence {0n’f} converges uniformly to f on [0,m].

LEMMA 2.2. Let {0n} be a sequence of functions such that on each interval [0,m]

0n 0 uniformly. Then, for f C and each interval [0,m], 0n*f 0*f uniformly.

A subset S of a countable union space X is said to be dense if for

each x E X there is some sequence {xn} in S that converges to x.

THEOREM 2.3. C is dense in MF.
PROOF. Let x E Mk for some k. Let {0n} be a sequence of k-tlmes continuously

dlfferentlable positive functions satisfying the following three properties:

(1) I 0n(t)dt for all n; (ll) supp 0n c_ [0,1/n], for n=l,2,...,

(iii) For each n, 0n(J)(0) 0, j=0,1,2,...,k. Then, by Lemma 2.1, for any

continuous function f, {On*f} converges uniformly to f on compact subsets of [0,).

),On(k) ], (k) 4k (4k,x),OnThus [(4k*x 4
k 4K*xeC for all n and [(4k*x)*On 1, 4k*x
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uniformly on compact subsets of [0,). That is {k*x*n(k) converges to x in MF.
Thus, C is dense in MF.

THEOREM 2.4. The mapping MF M
F given by x x’y, where y e MF, is sequentially

continuous.

PROOF. Let {x be a sequence in MF that converges to x. Thus for some k,

k*xn,k*xeC for n 2 ..., and on each interval [0,m] the sequence {k*x
’t nt

converges uniformly o k*x. Let y MF. Then, for some i, *y e C.

Hence, *x *x C for n 1,2,... and by Lemma 2.2, the sequence {k
converges uniformly on each interval [0,m] to k+i*x*y. That is, {Xn*Y} converges to
x*y in MF. This establishes the theorem.

The collection of infinitely smooth complex-valued functions on (-,)will be

denoted by C We now define the product of an infinitely smooth function and an

operator in MF-
MkDEFINITION 2.5. For C and x e the product of and x, denoted by .x, is

given by
k (J) (k,x).x [ (-1)J k

jffi0
(J) #

k-J
(where f/o f)

REMARKS 2.6. (1) If C" and f C, then .f is ordinary multiplication.

(ii) 1.xfx for x MF.

It is not clear that multiplication is a well-deflned operation. To see that it

Is,notlce that if n > m, f/n g/m if and only if f n-m,g. Now, let

n+k n
F [ (-llJ n+k J (J)

j ,[, (k,f)]_ [ (_1)j ()
j =o j =o

where k is a nonnegatlve integer. After differentiating F n+k times we obtain

Fn+k)(t)’" 0 for t > 0 and F(J)(0+) 0 for J 0,1,2,...,n+k-l. Thus, F(t) 0 for

t ) 0. Therefore, #.(f/n) .(k,f/n+k).
THEOREM 2.7. For ,#eC and x MF, (@.#).x= #.(#.x).

PROOF. Suppose that @,#eC" and xc_Mk. Then,

k
)n (kn)

k-n (J) ,(n) k,x
nffiO JO k-n-J

k n
)n () (n_j) k-nl 7. (-i k-J

n=O J=O
(2.1)

Now,

The last equality follows by the transformation ufJ+n and vffin.

k
)n (kn) (,)(n)(.#).x [ (-I

(k*x)
n=0 k-n

(2.2)



08 D. NEHZER

By Lelbnlz’s formula, we see that (2.1) and (2.2) are equivalent. Hence, the

theorem is proved.

EXAMPLES 2.8.

n
@.s

n . (-l)J () @(j)(0)sn-j for n=O 2 ,oeo
]--0

0(where s 6, 6 4/ is the identity operator).

(i i t
m

s
n

(-I)m n! n-m
(n-m) s n

REMARKS. 2.9. (1) Example (1) follows by substituting the formula

n, @(n) nl sn-(k+l)s + @(k)(0)
k=0

n
into the definition for .s

(see [I])

(ll) Example (ii) follows by substituting @(t) t
m

into Example (1).

THEOREM 2.10. The mapping MF into MF given by x @.x, where @eC is

sequentially continuous.

,.PROOF" Suppose that {xn} converges to x in MF. That is, for some

k, *x *xEC n 2 and on each interval [0 m] {*xn} converges uniformly
k n’

to *x.

k
Now, k*(@.x . (-1)j {} J*[@(J)(k*xn) C for n 1,2,.

n
]=0

Moreover, for each 0 < j k and on each interval [0,m], {J*((J)(k*x ))} converges
n

uniformly to J*((J)(k*x)). Hence, {.Xn} converges to .x in MF. This

establishes the theorem.

If we consider C as a subspace of MF, then the mapping from C into MF given by

.x is not sequentially continuous. To see this, let be any infinitely smooth

positive function such that: (i) (0)--I, (il) @(t)ffi0 for Itl ) I, and

(iii) f (t)dtffil. Now, for nffil,2,...,let n(t) (nt). Then, for each n and

t nt
for t )0, 0 (*n)(t) f n(U)du f @(u)du I/n.

0 0

Thus, {n converges to 0 in MF. But, for each n, n.6=n(0)6ffi6. Hence, {n.6} does

not converge to 0 in MF-

In the theory of distributions, the countable family of semtnorms

Yn,m(,)-sup{I,(n)(t)l: Itlm}, n=O,1,2,..., m 1,2 is used to generate a

topology for C’. In the following theorem, we assume that C is given this
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topology. The proofs of the next theorem and corollary are straightforward and thus

omitted.

THEOREM 2.11. The mapping from C into MF given by @ @.x is sequentially

continuous.

COROLLARY 2.12. Let ,(t) I a t
n

for Itl < (R).
nn=O

Then for x MF, .x an(tn.x).
n--O

3. DIFFERENTIAL EQUATIONS AND OPERATIONAL EQUATIONS.

It is known that the only solutions, within the framework of distribution theory,

to a linear homogeneous ordinary differential equation with infinitely smooth

coefficients are the classical ones. But, when the coefficients have singularities,

there may be other distributional solutions (see [5] Littlejohn and Kanwal, and Wiener

[6]). In this section we will show that in MF the situation is similar. For

smpllclty, we will only consider second order differential and operational

equations. However, what follows is also true for nth order equations.

When solving the initial value problem y" + ly’ + 2y O, y(0) B and

y’(0) B2 using operational methods, the corresponding operational equation Is
2

s *y + (s*y) + a2Y (B2 + a1I)6 + 1s" This follows by the formula given in

Remark 2.9(i). By a slmilar argument, the differential equation y" + ly’ + 2y O,

where i,2
C corresponds to the operational equation

2,xs + l.(S*X) + 2.x (B2+Bll(O))6 +

where y(0) B and y’(0) 82" Thus, we will consider second order operational
2

equations of the form s *x + l.(S*X) + 2.x a + a2s where a and a
2 are

constants and i,2
C

THEOREM 3.1. Let a and a
2

be constants and I,2 C=. The only solutlon to

the operatlonal equation s2*x + l.(S*X) + 2.x al + a2s is the classlcal solutlon

to the corresponding dlfferential equation.

PROOF. Let x e M
k

such that

k+1 @
(j) (k*x) k 2(J)2,x J (k+1s + I (-I)
k+1-J

+ I (-1)J k (k*x)

a + a2s.

By convolvlng both sides with k+2 we obtain

k+l
k*x + J=0Z (-1)J (k+lj) J+l,[1(J (k*x) (3.1)

k

0



410 D. NEMZER

Now, notice that each term, except the first k*x, in (3.1) is differentiable

on (0,). Hence, k*x is also differentiable on (0,). By an inductive argument,

we obtain k*x C(0,).
After differentiating (3.1) k + 2 times we obtain

(k*x)(J)(o+) 0 for j 0,1,2,...,k-I, (3.2)

(k,x)(k)(O+) a2’ and (k*x)(k+l)(o+) al l(O)a2"

Moreover, (,k*x)(k+2) + l(k*x) (k+l) + 2(k*x) (k)
O.

Now let

g (k*x)(k). (3.3)

Then, g is the unique solution to the initial value problem g" + Ig’ + 2g 0,

g(0) a2’ and g’(0) a l(0)a2. By (3.2) and (3.3), k*x k,g. That is,

xffig, g(0) 2’ g’(0) al l(0)a2" This establishes the theorem.

The following examples demonstrate that the situation is different when

singularities are allowed in the coefficients. By using the formula given in Example

2.8(ii), it is easy to verify that x is a solution to the corresponding operational

equation.

EXAMPLES 3.2.

(1) x 6 is a solution to t.(s2*x) + (2-t).(s*x) x 0.

(ii) x s is a solution to t.(s2*x) + (3-t).(s*x) x 0.
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