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ABSTRACT. The Wallmsn ordered compactification ,vex of a topological ordered space X is T-ordered
(and hence equivalent to the Stone-(ech ordered compsctification) iff X is a 7’ordered c-space. In particular,

these two ordered compactifications are equivalent when X is n dimensional Euclidean space iff n _< 2. When

X is a c-space, oX is Tx-ordered; we give conditions on X under which the converse statement is abo true.

We also fmd conditions on X which are necessary and suttcient for voX to be T. Several exunples provide

furer insight into the separation properties of voX.

KEY WORD8AND PHRASES. c-set, maximal c-filter, Tl-ordered space, 2’:t-ordered space, ordered compscti-

fication
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The Wallman ordered compsctilication vooX of s Tx-ordered space X was introduced in 1979 by Choe

and Park [1]. In [3] one of the authors showed (in the terminology of this paper) that woX is T-ordered iff X

is a T4-ordered c-space, and that for such spaces, voX is equivalent to the Stone-(ech ordered (or Nschbin)
compactificstionX of X.
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This paper continues the study of the separation properties of woX. If X is a c-space (meaning that

the increasing and decreasing hulls of every c-set are closed), then oX is Trordered, and under certain

further restrictions on X the condition of being a c-space is shown to be necessary in order for oX to be

Trordered (see Theorems 2.7 and 2.8). Two conditions on X are found which are necessary and sufficient

for oX to be T2; one is an ultrafdter condition, while the other is a version of normality for ordered spaces

which we call %-normally ordered? For Trordered c-spaces, the notions %-normally ordered and or-
mally ordered (as defined by Nachbin, [5]) are equivalent, but for Trordered spaces in general it is shown

by examples that neither property implies the other.

One motivation for studying the Wallman ordered compactification is that it gives a convenient filter

characterization for oX when X is a T-ordered c-space. For -uclidean n.space R, we show that voR and

om are equivalent iff

_
2, and we then give a description of oR based on the Wallman characterization

of compactification points in oR as non-convergent maximal c-filters. Other examples are given to show how

the separation properties of the Wailman ordered compactification can fail in various ways and combinations.

1. The Wallman Ordered Compactiflcation.

If (X, _<)is a poset and A a non-empty subset of X, we deiiue d(A) {y X’y <_ z for some z A}
to be the decreadn hull of A; the increadn hull i(A)is defined dually. We shall write d(:) (i(:)) in place

of d({:})(i({:))). A subset A is increoJin (respectively, decreasing)if A --i(A)(respectively, A d(A)).
A set which is either increasing or decreasing is said to be monotone. If A i(A) d(A), then A is called a

coneez set.

We shall use the term space throughout this paper to mean a triple (X, _<, r), where (X, _<) is a poset

and r a convez toplogy on X (i.e., a topology for which the open monotone sets constitute an open subbase).
When there is no danger of confusion, we shall designate the space (X, _<, r) simply by ’.

For any space X, we shall use the term fundamnt open set to mean any set expressible as a finite

intersection of finite unions of monotone open sets. The set/Ix of all fundamental open sets forms an open

base for X. The complement of a fundamental open set will be called a fundamenta clo,ed set.

Let A be a subset of a space X, and let I(A)(respectively, (9(A)) be the smallest closed and increasing

(respectively, closed and decreasing) set containing A, and let A^ = I(A)f3 D(A). If A = A^ then A is called

a c-,ef,, let Cx denote the collection of all c-sets on a space X. One can verify that Cx is closed under
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intersections and forms a subbase for the collection of closed sets in a space X. The relationship between

fundamental open sets aud c-sets cau be described as follows.

Proposihon . Let X be a space. Then U E//x iff X- U is a teon of c-ts.

d d() deed sly. The

d filtem Xw do not ct sjot

pror ter).

then is cl a c-r. It is eu to ow( Zom)s ama) tat e c.ter i comer tm a

mm c-ter. our study of the WImm order comptiatim,

the foIlow tedzatimw be

P. Ac-ter

P/. amm c.ter md A , m cm have o tre m A, for a tre wd

be a c-ter strictly er tm A. Th X A

is a strictly er c-ter,mme c.t

to t stat cm&tio,

A space X is ’a.ordered
Ta-orded spe, e singleton (z) a c-t. Ae with cl or k de to be T.order [4].
Ae X is rlod [5] if, wher A d

dg, e sjot open ts U d V, wi Ucgmd V deep.g, st A U d

B V. Aew b both

be one

be me wec-t Ah the prer thst i(A) d d(A) cl sets. Oiye-e
a c-spe; pic, e compt, T.ordered m c.es. temste tedsti for

d D(A) B = p. D(A) I(B) = . X T4-ored the two precns impficsti hold for

arbitrary c-sets A and B, then X is s c-spsce.
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The Wallman ordered compactification can be constructed for any T1-ordered space X. The original

construction by (;hoe and Park [I] was based on "maximal biflters’; we shall follow the approach of [3} in

which maximal c-lilters fore the underlying set for m0X. Given a T1-ordered space X, let moX {: z E

X} U X, where A is the set of all non-convergent maximal c-filters. A partial order relation is defined for

o0X s follows: 7 iff I(’} C_ , and D(,) _C 7. The embedding map io’ X --, tooX given by o(z)=

for all z in X is obviously increasing.

For any subset A of X, let A* { jr E ooX A G ’}. If " is a filter on X, let ’* be the Jilter onX
generated by {F* F G ’). The fact that the latter collection is a filter base and other important properties

of this set operator follow from the next proposition.

Propodtion I. Let X be a Trordered space.

() Vo ll ,,t, A, o X, (A a )’ X’a ’
(b) If A,B x, then ((X A) (X B))* (X A)O (X B)*

e Cx, (x- x’

Ptoo,f. Statement (a)is clear, and (b)follows from Proposition 1.2; (c)is au easy consequence of (b).

The topology for ooX is defined by choosing for a subbase of closed sets the collection (A’ A 6

Cx}. If [I . Ix, then U is a finite intersection of complements of c-sets and U’ is open in ooX; indeed

{U’ U 6 /x) is a base for the open sets in ooX. In particular, sets of the form F* where F is open and

monotone in X fore an open subb for ooX. It should be noted that if If is a non-fundamental open set

in X, it is not generally true that F* is open in X. The following facts about the topology of ooX will be

stated for future reference.

Proposition 1.5 Let X be a T-ordered space.

(a) If B is a monotone closed (respectively, open) set in X, then B* is monotone in the same

sense and closed (respectively, open) in ooX.
(b) If ’ E ooX, then the neighborhood filter ’P*(,7) at ’ in soX has for its filter base ([/’ :[/e

’nx}.

The next two theorems summarize the main results Mrely known bout the WMlmm ordered com-

pactification Proofs for these propositions form the mm results of [1] and [3} and the reler is referred to
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these sources for further details. Here we should mention again that the proofs in [1] are formulated in the

language of oifilters’, but the translation into gc-lilter’ terminology presents no diificulties.

Theorem I.# Por my Trordered space X, (oX, o) is an ordered compsctification of X, sad X
is a T topological spce. Also, oX is T2-ordered iff X is a T-ordered c-space.

Theorem 1.7 Let X be a Trordered space, Y a T-ordered compact space, sad f X ---, Y a

continuous increasing function. Then there is a unique continuous increasing function f X --, Y such

Let us recall that for a space which admits a T2-ordered compactificstion (see [5] for a characterization

of such spaces) there is always a largest T2-ordered compactification called the Stone-(ech ordered (or

Sachbin) compactification denoted by oX (see [2], [5]). The two preceding theorems yield the following

important corollary.

Corollary 1.8 For a space X which admits a T2-ordered compactification, ooX andX are equiva-

lent iff X is a T4-ordered c-space.. Separation Properties of voX.
Given a Trordered space X, we already know that woX is T, d that woX is T-ordered iff X is

a Tordered c-space. We shall now examine conditions on X subject to which woX is T-ordered or T. As

it turns out, X can fail to have either of these latter properties, can have either one without the other,

or can have both properties and still fail to be T-ordered; examples are given later to illustrate all of these

possibilities. We begin by finding conditions on X which are necessary and suicient for oX to be T.

Propodtion .I Let I be an ultrqlter and a msdmal c-filter on X. Then o(/’) -, ,
inoX iit t^ c_ ,.

P,ooi. Lt ,() - g 0X. Let e be -t. If , the eith () , or D() g;
without loss of generality, assume the former. Then I(F) , implies, by Proposition 1.2, that X- I(F) e ,,6,

and therefore , . (X- I($’)), which is a subbaic open neighborhood of ,,6 in voX. Now o(t) -, ,,6 implies

(X- I(F))* e o(/’}, and consequently X- I(F) G jr. This contradicts the fact that F e t, and therefore

every element of t^ is in ,,6.



214 D.C. KENT AND T.A. RICHMOND

Conversely, let Y’^ _. , and (X A)’ be a subbasic open neighborhood of , where A is closed and

monotone in X. Since " is an ultragter, either A /jr or X- A /’. If A ’ then A ]’^, which in turn

implies A (/,, contrary to the fact that X- A . Thus X- A ’, and hence (X- A)* (]’). Since

(X- A)* is an arbitrary subbasic open neighborhood of ,, (’) ---, ,.
Theorem/. Let X be a Trordered space. Then soX is T: itS, for each ultrsfdter ’ on X, them is

a unique maximal c-ter , on X such that ’^ c_ .
Proof. If X is T2 and ’ an u]trsfdter on X, then o(,) is an ultrsfilter on ooX which must con-

verge to some maximal c-filter ,, since voZ is compact. By Proposition 2.1, 1"^ _C ,. If there is a diterent

maximal c-filter J; with ’^ c_ , then o(’) would also converge to J, contrary to the assumption thatX
is T2. Thus , is unique.

Conversely, assume the uniqueness condition. If oX is not 72, there is a ter .4 on v0X converging

to distinct elements , J/in o0X. Let be an ultrlter on X freer than the filter generated by (A C_ X’

,4* e ). One easily verifies that o() must converge to both , and N, which, by Proposition 2.1, violates

our umed uniqueness condition,

A space X is defined to De c.ormslly ordered if, for each psir of disjoint c-sets A, B, there are

disjoint fundamental open sets [/, such that A

_
[/and B C_. V. As we shall see in later examples, there

are spaces which sre c.normsily ordered but not normslly ordered, and vice versa. Of course, both of these

versions of ordered normality reduce to ordinary normality when the psrtisl order for X is equality.

Theorem/.3 The following conditions on a 7’rordered space X are equivalent.

(1) X is c-normally ordered.

(2) Two disjoint fundamental closed sets in X can be separated by disjoint fundamental open

neighborhoods.

(3) If A is a c-set in X, then every fundamental open set containing ,4 contains a fundamental

closed set which in turn contains a fundamental open neighborhood of A.

(#,) For each ultrsfter " on X, there is a unique maximal c-filter , finer than ^.

 ooX
Proof. The equivalence of (1), (2), and (3)is a routine exercise, and the equivalence of (4) and (5)

was established in the previous theorem.
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(1) = (5). If and are distinct maximal c-tilters on X, then there are disjoint c-sets

and G ,. Let U and V be disjoint fundamental open neighborhoods of F and G respectively; then by

Proposition 1.4, U* and V* are disjoint open neighborhoods of I and ,, respectively, in oX.
(5) = (1). Let A and B be disjoint c-sets in X. Then A* and B* are disjoint closed sets in X, and

since oX is compact and Tz, there are disjoint open sets M and N inX such that A* C_ M and B’ C_ N.

Since {U*’ U x} forms an openb for oX, there are subcollections {U/" I} and

such that M t{U/’’ I} and N O{V’ "’ J}. Using the fact that A’ and B* are compact subsets

in X, we can fred finite snbcovers Ui’ U*.,, of A* and V.] V,*,,, of B*. Letting U =

and V Ui 0... 0 Ui,, we obtain disjoint fundamental open neighborhoods of A and B in X.

Although neither of the properties hormally ordered’ and ’c-normally ordered’ implies the other

in geneS, the next theorem establishes the eqaivahnce of these properties in r.ordered c-spaces. We fa’st

need the following lemma.

Lemma . Let X be a c-normally ordered c-space. If A is a c-set in X and U is an open, increasing

neighborhood of A, then there is a closed, increasing neighborhood G of A such that A C_ O _. U.

Proof. Let B X- U; by Proposition 1.3, I(A)f B = , and so I(A) and B can be separated by

disjoint, fundamental open sets W and V, respectively. By Proposition 1.1, X- V is a fmite union of c-sets

C,...,C,,. By Proposition 1.3, I(C)fB = for all indices i; let G {I(Ci)’ i= 1,...,n}. Thus G is

closed and increasing, and A C_ W _C O C_ U.

tieorem .5 For a/’I-ordered c-space X, the following statements are equient.

(s) X is normally ordered.

(b) X is c-normally ordered.

(c) oX is T-ordered.
Proo,. (a) (c)is established in Theorem 1.6. (c) (b)follows by Theorem 2.3. (b) = (c): It

is sut[icient to show that if t, oX sad I ,, then there m’e disjoint neighborhoods of t and , in

ooX, where the former is am increing set and the latter decreeing. If t ;,, then either I(I) , or

D(,) ; without loss of generality, ume the latter. Since is a maximal c-ter, there

and ’ t such that D(G)f3 g @. By Lemma 2.4, there is a closed, increasing neighborhood N of g such

that N f D(G) -- and a fundamental open set W such that F _c W N. Now (X N)*, which is
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a decreasing open set in oX by Proposition 1.5, and the increasing hull of W* in ooX provide the desired

neighborhoods which separate " aad in oX.

If oX is T-ordered, then X is necessarily a T-ordered c-space; thus the following corollary is

immediate.

Corollary . For a Trordered space X, oX is T-ordered it[ X is a +normally ordered c-space.

Theoeem . 7 If X is a T-ordered c-space, thenX is T-ordered.

Proof. Let ’ X, sad let i,(Jr) {, / 0X’ jr } be the increasing hull of ’ in oX. Let

’d,,’ denote the closure operator in 0X. We shall show that d,(i,(Y))

_
i,(’); a similar argument shows

that the decreas/ag hull of ’ is closed, ad hence that X is T-ordered.
If d,(i,(Y)), then for each A Cx such that , (X- A)’, there is i,(’) such that

(X-A)’. With the help of Proposition 1.2, the last sentence may be restated as follows’ if , el,(i,(Y))

and A Cx, then A implies there is / oX such that " /and A

Now assume that , d,,(i,,(’)); if , i,(Y), then either I(Y) , or D(,) g ’. Suppose

I(’) ; then there is F r such that I(F) . But , d,(i,,(r))implies there is i,(Jr) such that

I(F) /, a contradiction. On the other hand, suppose D(,) ’. Since ’ is a maximal c-lter, there are

c-sets F jr and G , such that D(G)0 F = , sad by Proposition 1.3, D(G)
and a repetition of the preceding argument agai yields a contradiction. We may therefore conclude that

i,(’), ad hence that/,,(’) is closed.

The converse of Theorem 2.? does not hold in general, however the next theorem establishes a partial

converse. We shall say that a net (z) in a space X is upward directed if, for each pair of indices ,p
there is A such that , _< , # _< r, z, _< z, aad z <_ z#. Docnoard directed nets are defined dually.

Theorem .8 Let X be a Tz-ordered space with the property that, whenever A is decreasing (re-

spectively increasing) and z elxA, there is an upward directed (respectively, dovnward directed) net on A

which converges to z. ThenX is T-ordered iff X is a +space.

Peoof. Suppose X is not a c-space. Then for some +set A in X, either i(A) is not closed or else

d(A) is not closed. There is no loss of generality in assuming the latter. Thus there is some I dxd(A)
such that d(A); by assumption there is an upward directed net (z) on d(A) converging to I. Then

{i(z) A’ A A} is a base for a c.ter , on X; let jr be a maximal c-filter freer that
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Let K" be the filter generated by the net (z).. Then K" /, and if .g’ ---, z for some z E X,

then it must follow that <_ z, since " x " has a trace on the order, and the order is closed. But l -< z

is a contradiction since A " and A a c.set implies z A, and therefore l d(A). Thus must be a

non-convergent maximal c-ter, and therefore an element of oX.
oOne may easily verify that zA,,, Y holds for all A A, but that ;’. But (zA)AeA F in X implies

()Ae -’ in 0X, and hence cl,,(d,(Y)), but d,(Y). Thus #0X is not Trordered.

Smple/. LetX= ABtJ{a}tJ{b},whereA= {z, :i= 1,2,3,...} andB = {F :i= I, 2,3,...}.
Define the topoloff for X by specifying that {z} is open for z e A tJ B; the neighborhood liter at a (re-

spectively, b) is enerated by sets of the fore A,, = {: _> n} (respectively, B,, = {: _> n}), where

n 1, 2, 3,.... The order for X is the smallest partial order such that z _< F for each positive integer i.

It is evident from this construction that X is a compact, T, T-ordered spce; thus we may identify X

with oX. Note that every closed set in X is a c-set, and every open set is a fundamental open set; it follows

that X is c-normally ordered. However X is not a c-space, since for the c-set C = B tJ {b}, i(C) = A tJ C is

not closed. Thus X is neither T-ordered nor normally ordered.

The main points illustrated by this example are that the converse of Theorem 2.7 does not hold in

enera], and that the conditions Trordered, P, and c-normally ordered on X are not sufficient to guarantee

that oX is T-ordered. This example also shows that a c-normally ordered space need not be normMly

ordered, even when the axioms rrordered and T2 are present.. Example in Euclidean Space.

Additional insight into the behavior of the WMlman ordered compactifiction can be gained by study

in some simple examples in R (by which we mean Euclidean n-space with the usual product topolo and

product order), especially in the case n = 2. We shall show that n = 2 is the largest value of for which

o is Ts-ordered, and hence the largest value of n for which R = o. We shall use the known

properties ooR2 to describe oR2. We also examine two simple subspaces of R2 for which the Wallman

ordered compactification is not -ordered.

’hom .I Let A be a closed, convex subset of R2. Then (A) = I(A) and d(A) D(A), and

hence ]2 is a c-space.
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Pt’oof. We shall prove that i{A)is closed; a similar argument shows that d(A)is closed.

If i(A)is not closed, then there is a sequence (z,,ll,) in i(A)such that (z,,y,) --, (o, yo), where

(zo,o) i(A). Let (an,b,) be a sequence in A such that (a,,, bn) _< (z,, I/n)for all tt ’+. The convergence

of the sequence (zn, I/,)implies that the sequences (%) and (bn) are both bounded above. Bither of these

sequences may fail to be bounded below, and this leads us to consider four cs.

Case 1. (a,,) and (b,) are both bounded below. Then there is a convergent subsequence (a,,, b,,,) -,

(a,b). Since A is closed, (a,b)e A, and since R2 is T2-ordered, (a,b) <_ (zo, yo), contrary to (zo,yo) $ i(A).
Case . (o.,,) and (b,,) are both unbounded below. Then for some tt Z+, (a,,, b,,) <_ (o, yo), which

again contradicts (zo, y0 i(A).

Case 3. (a,) is bounded below, but (bn) is not. In this case, there is no loss of generality in assuming

that -, a and that (b,,) is an unbounded, decreasing sequence. Then there is E + such that b,, <_ yo,

for all tt _> no. Also a _< zo since R is T2-ordered, and for tt _> no we must have a _< a,,, for otherwise

(a,,b,) _< (o,yo) would again yield a contradiction. Thus from the sequence (a,),,_>, it is possible to

obtain a decreasing subsequence (a,,) -, a, and the corresponding subsequence (bn)is, of course, decreasing

and unbounded. Now for any ,+, (a,i,b,,i) <_ (a,i,b,,) <_ (a,,,,b,,), and the convexity of A implies that

(a,,,b,,,) A for all " Z+. Thus, (a,,, b,,,) (a,b,,,) and (a,b,,,) A since A is closed. But a <_ r.o sad

b, _< yo implies (zo, yo) i(A), a contradiction.

Gate 4. (b,,)is bounded below, but (a,,)is not. An argument similar to that of case 3 yields a

contradiction.

Propositiott 3. Rn is not a c-space for tt _> 3.

0) / Z+}. The elements of A are isolated in both thePtoo.f. Let A {(m,-, ,0,..., m

topological and order sense, sad so A is a closed, convex subset of R". One can verify that I(A) = i(A)
and D(A) = d(A) B, where B = {(z,0,z,0, ...,0) fi Rn’ z _< 0}. Since i(A)f B = , it follows that

A I(A)f D(A) A^, and so A is a c-set. But d(A) D(A), and so/ is not a c-space.

Thvrem 3.3 Rn is Ti-ordered for all tt Z+.
Proof. If z = (z,...,z,) R" and z _< I/, then N(z,e)C_ d(N(I/, ))and N(tt, e)_C i(N(z,t)); from

this it easily follows that the increasing sad decreasing hulls of open sets in R" are open. If A is a closed

increasing set and B a closed, decreasing set in R" such that A FIB , then for each b B we may choose
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rt such that A f3 N(b, rt)= b, and consequently A f3 d(N(b, r)) b. Likewise, for each a A, there is r,

such that B f i(N(a, rs)) . Let U = 13{i(N(a, re/2))" a E A) and V = u{d(N(b, rt/2))’ b E B). Then

U and V are disjoint open sets, the former increasing and the latter decreasing, which separate A and B. |

heorem 3. The following statements are equivalent.

(a) R" is a c-space.

(b) worn is Trordered.
(c) worn is T2-ordered.

(e) n 2.

Pf. It is obvio that Rx, the creug or dreug hl of y cled t cled, d so

-pe. Th () () fo]ow by Theorem 3.1 d Propoitio 3.2.

(a) (b) follows fm Theoms 2.7 d 2.8. By Theoms 1.6, 3.1, d 3.3, wo is T2-order for

n 2, d by Theom 1.6 d Pposition 3.2, morn is not 2-oer for

(d) by Theorem Coroti 1.8.

The Wallman ordered compactification of R is the familiar two point compactification which is

commonly called the ’extended real le? ]a the cue of R2, this compactification, which is not so familiar,

is described in the next example.

Ezample 3.5 R2 is simultaneously homeomorphic and order isomorphic to the open square q

{(zx, :2) R’ -1 < z < 1, -1 < z2 < 1). The closed square 9 = {(x, z) R2 -1 < z <_

1, -1 <_ z2 <_ 1} can thus be regarded as a T2-ordered compactification of R2. The most convenient way

to describe moR2 (or, equivalently, oR) is to is to consider each boundary (i.e., compactification) point

p of $ to be replaced by the set J, of all non convergent maximal c filters /on 8 which converge to p

in . If p -- (1,1), then , consists of a single maximal c-filter which is the greatest element of woR.
Similarly, the leat element of 0R2 is the unique maximal c-ter in J(-x,-x). If p is ay boundary point

of , other than (1,1) or (-1,-1), then , contains 2 distinct elements, where ’ is the cardinality of the

real line, including both a greatest and a least element. For instance, if p (1, 0) the least element in

q, is a maximal c-filter in $ which contains the positive x axis aad converges in , to (1,0); the greatest

element is a maxima c-filter freer than the filter supremum of {I(’) t J,} which converges to (1, 0) in ,.
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If p,q are two boundary points in 9 and p <_ q in 9, then ,,G < /for all E p and for all /( ,;
furthermore if , < J( for some , ( , and for some /( q, then p <_ q in . Similarly if z ( $ and p is a

boundary point of , then z _< p in iff < R for some R , (in which cae < /for all R ).
The next two examples show that even for the simplest subspaces X of R2, various pathologies can

rise i oX.

Example 3. Let X be the closed square (defined in ample 3.5) with the origin (0,0) deleted,

and with the topology and order inherited from R2. Let (respectively, /) be the maximal c-tilter on

Xx which contains the negative portion of the x.axis (respectively, y-axis) and converges to (0,0)in 9. If

A = {(z,0) z < 0} and B = {(0,1/): 1/< 0}, then A and B are c-sets in Xx. Since B c_ D(A) but

B f3 d(A) /, d(A) # D(A) and thus Xx is not a c-space. Furthermore, it follows from Theorem 2.8 that

oXI is not Tx-ordered. Alo, A and B cumot be separated by fundamental open sets, and consequently

m0Xx is not T. However, the argument used to prove Theorem 3.3 can be applied to show that

ordered. We thus have an example which, in contrast to Example 2.9, is normally ordered but not c-normally

ordered, and for which the Waliman ordered compactification is neither Tx-ordered nor

It is easy to describe oX. The aole at (0, 0) in Xt is led in oX by a set (o,0) of maximal

c-filters on X which converge to (0, 0) in 9. The tilten , and /described above are minimal elements in

J(o); there are also two maximal elements in J(o,o) which are maximal c-filters convergg to (0,0) in

along the positive z and I/axes. The set of compactification points contah no greatest or least element and

has cardinality .
Example .7 Let X2 be the closed square , with the y axis deleted except for the origin; the topology

and order are those inherited from R:. One may show that this space is both Tl-ordered and c-normally

ordered. However, Xz is not a +space, for if A {(z, 1/2)’z < 0}, then A is a c-set and (0,0) D(A). Thus,

woX is T by Theorem 2.3, but woX is not Trordered by Theorem 2.8. Without going into detail, we can

partia]ly describe woX:t by remarking that every ’hole’ in Xa corresponding to a misg point on the y-axis

is filled in oXa by adding 2’ compactification points including, in each case, a pair of minimal elements and

a pair of maximal elements.

For the sake of completeness, we should give an example of a space X for which oX is if’x-ordered

but not T. This turns out to be quite easy. Let X be any T, completely regular toplogical space which is
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not normal, and let the order for X be equality. Then it is well known that moX is T (and hence T-ordered)

but not T2.
Our 6hal example does not pertain directly to the Wallman ordered compactification, but it does

provide further insight into the nature of c-sets, which are crucial ingredients in the construction of this

compacti6cation. It shows that closed, convex subsets of R need not be c-sets, and that the relation de6ned

by gA is a c-set in B is not transitive. We are grateful to Dr. Bettina Zoeller for providing this example as

well as the related example used in the proof of Proposition 3.2.

Ezample 3.8 Let K = {(m,-, )’m ’+} U {(-m, ,-g)’m Z+} be a subset of R;
note that K is closed and convex. Let n = I(K) f D(K); then L is the union of K with the x-axis, and

consequently K is not a c-set. Furthermore, observe that K is a c-set in L (considered as a subspace of R)
and L is a c-set in R, but K is not a c-set in R.

Such an example cannot be found in Ra for n _< 2, since in these spaces every closed, convex set is a

c-set.
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