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ABSTRACT. In this note we prove the existence of operators which are not Tauberlan

even though they satisfy properties about restrictions being Tauberian. The operators

are defined on Banach spaces which contain a somewhat reflexive, non-reflexlve

subspace. This gives an answer to a question proposed by R. Neidinger [i].
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I. INTRODUCTION.

Throughout this note E, F are infinite-dimensional Banach spaces over the real or

complex field. All operators T:E F are assumed to be linear and continuous.

Given T L(E,F) the notation TIZ denotes the restriction of T to the subspace Z of E.

Recall that an operator T E L(E,F) is said to be semi-Fredholm if its null space

N(T), is finite-dimenslonal and its range space R(T) is closed. Also, a Tauberian

operator, as defined by D. Garllng and A. Wllansky in [2], is a bounded linear

operator T E L(E,F) such that T" preserves the natural embedding of E into its double

dual, i.e., T"x" F implies x" E. Some relationships between these tw classes of

operators have been studied in [i], [3], [4] and [5]. In particular, if R(T) is

closed, then T is Tauberian if only if N(T) is reflexive.

It is well-known that the restriction of a semi-Fredholm operator to any closed

subspace is again a semi-Fredholm operator. In the opposite direction it is
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x)rthwhile to mention the following result that is basically due to T. Kato [6],

THEOREM I (c.f. [6]). Let E,F be inflnlte-dlmenslonal Banach spaces. Assume

that T:E----+ F is an operator such that every inflnlte-dlmenslonal closed subspace Z

of E contains an inflntle-dlmenslonal closed subspace W for which TIW is semi-

Fredholm. Then T is semi-Fredholm.

It follows that in order to see that a given operator T is semi-Fredholm, it is

enough to assure that its restriction to every closed subspace with a Schauder basis

is semi-Fredholm.

Another related result is the following theorem due to R. Neldlnger in which

Banach spaces with no inflnlte-dlmenslonal reflexive subspace are called "purely non-

reflexive" spaces.

THEOREM 2 ([I], p. 26). Let E be a weakly sequentially complete Banach space and

let T L(E,F). Then T is Tauberlan if (and only if) TIZ is semi-Fredholm for all

purely non-reflexlve closed subspaces Z of E.

In view of the preceding theorem, R. Neldlnger raised the following question

([I], p. 139): If T E L(E,F), restricted to any purely non-reflexlve closed subspace

is semi-Fredholm, is T Tauberlan?. Indeed, the answer is positive if E is

reflexive. Then, we assne that E is not reflexive. In this case there are some

trivial situations for which the answer is negative (e.g., let E be a somewhat

reflexive space, that Is, every inflnlte-dlmenslonal subspace of E contains an

Inflnlte-dlmenslonal reflexive subspace, and let T be a finite rank operator). Our

next example gives a negative answer to the question raised by R. Neldlnger in a non-

trivial situation.

EXAFPLE. Let J be the James space and let T:J x ii----+ I
I

be the operator defined

by T(x,y) y.

Since R(T) is closed and N(T) J is not reflexive then, T is not Tauberlan.

Now, let Z be a purely non-reflexlve closed subspace of J x i I. Since J is somewhat

N(TIZ) N(T) O Z is flnlte-dlmenslonal; otherrlse, N(TIZ would containreflexive, an

inflnlte-dlmenslonal reflexive subspace, which contradicts our assumption over Z.

Also, N(T) and Z are totally incomparable Banach spaces (i.e., there exists no

inflnlte-dlmenslonal Banach space which is isomorphic to a subspace of N(T) and to a
isubspace of Z). This implies that N(T) + Z is closed in J x 1 [7] and hence,

R(TIZ is closed by the open mapping theorem.T(Z)

TIZ is semi-Fredholm for all purely non-reflexiveThus, closed subspaces.

2. MAIN RESULTS.

Another related problem is as follows; we know that the restriction of a

Tauberlan operator to any closed subspace is again Tauberlan. So, is Theorem 1 true

for Tauberlan operators instead of semi-Fredholm operators?. The answer is obvlously

positive if, for instance E is reflexlve or E is purely non-refelxlve. However, we

have,

THEOREM 3. Let E be an Inflnlte-dlmenslonal Banach space which contains an

Inflnlte-dlmenslonal somewhat reflexlve closed subspace M which is not reflexive.
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Then there exists an inflnlte-dlmenslonal Banach space F and a non-Tauberlan

surjectlve operator T:E F such that every inflntle-dlmenslonal closed subspace Z

Inflnlte-dlmenslonal closed subspace W for which TIW is Tauberlan.of E contains an

PROOF. First assume that E/M is inflnlte-dlmenslonal and consider the quotient

map T:E----+ E. It follows, as in the above example, that T is not Tauberlan but

that for every purely non-reflexlve subspace Z of E then, TIZ is Tauberlan. Now,

assume that Z is not purely non-reflexlve; in this case there exists an infinite-

dimensional reflexive subspace W Z. For this W, it is obvious that is

Tauberlan.

If dim E/M < then, E is itself somewhat reflexive and non-reflexlve. Since E

is not reflexive, there exists a bounded basic sequence (en) in E which is not weakly

null [8]. Without loss of generality, (e2n) is not weakly null, otherwise use

(e2n_l). Let N be the closed linear span of (e2n). It follows that N is a non-

reflexive closed subspace of E such that E/N is inflnlte-dlmenslonal. Let us prove

that the quotient map T:E -----+ E/N satisfies the conclusion. Given an infinite-

dimensional closed subspace Z of E then, Z contains an inflnlte-dlmenslonal reflexive

it follows that T IW is Tauberlan. But, on the other hand, T is notsubspace W;

Tauberlan because its null space N is not reflexive.
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