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ABSTRACT. A polynomial f over a finite feld F is a permutation polynomial if the

mapping F F defined by f is one-to-one. We are concerned here with binomials, that

is, polynomials of the shape f=aXi+bXJ+c,- I>J91. Even in thls restricted setting, it

s impossible to glve general necessary and sufficient conditions on a,b,c for f to be

a permutation polynomial. We review, and systematize, what is known.
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I. INTRODUCTION.

In the introduction to [I] the authors claim "we are able to determine at a

glance precisely when f(X)=aXi+bXJ+c GF(q) is a permutation polynomial, in terms of

a,b, and c." However, their promise is in fact only partly fulfilled. The purpose of

the present paper is to clarify exactly what is known about characterizing permutation

polynomials of the given shape.

An additional goal of this paper is to serve as an invitation to a fascinating

subject, permutation polynomials over finite fields. Thls subject is accessible to

anyone wlth some algebraic background, and abounds in unsolved problems and

conjectures; it has honourable historical roots (Hermlte, Dickson,...) and has

attracted renewed interest in recent years because of significant applications In

cryptography and comblnatorlcs. For a good discussion of the maln conjectures and

open problems, and for some references concerning applications, the reader is referred

to the recent article [5]. Any reader whose interest is more than superficially

aroused (by the present paper and/or [5]) should consult Chapter 7 of [2], where

she/he will find an extended discussion together wlth voluminous historical and

bibliographic notes.

The point of focusing on binomials in this paper is twofold. First, they are the

simplest non-trlvlal case (monomlals are easily disposed of; see Prop. below) and
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they therefore serve as a convenient testing ground for ideas and results which might

hold more generally. Second, by restricting attention to polynomials of a special

shape, it is often possible to find useful results which may not generalize so

readily. Some particularly striking examples of this phenomenon, for binomials, are

the theorems of Niederrelter and Robinson referred to as Propositions 9 and I0 below;

these say essentially that a binomial, of degree d, say, can permute only those finite

fields which are sufficiently small (relative to d).

2. TERMINOLOGY AND MAIN RESULTS.

To begin, let us recall the terminology. Throughout, let F be a finite field, q

its cardinallty, F(X) the polynomial ring. Let R {feF(X) deg fq-l} and let M be

the set of all mappings F F. These are two vector spaces of the same dimension q

over F. Associating to each f eF(X) the mapping f:F F it defines gives rise to a

commutative diagram

F(X)

R -- M

(here R F(X) is the inclusion). It is immediate that is an isomorphism of F-

vector spaces: ker is trivial because a polynomial h over a field cannot have more

than deg h roots. The non-zero elements of F form a multlpllcative group F* of order

q-l; hence xq-l= for all 0xeF and xqffix for all x. It follows that the ideal

I=(xq-x)F[(X)] is contained in the kernel of @ Since the quotient F[X]/I is

clearly isomorphic (as vector space) to R, we have ker l,

so F[X]/(xq-x)F[X] R M.

In particular, every mapping F F is given by a unique polynomial of degree

q-l. One says that f e F[X] is a permutation polynomial if the corresponding

mapping f is a permutation of F (equivalently, if f is onto, or one-to-one). We

usually abbreviate "f is a permutation polynomial on F" to "f permutes F" in what

follows. The problem of characterizing permutation polynomials (among all polynomials)

by necessary and sufficient conditions on the coefficients is (easy in low degree and)

intractable in general; see [I] and Chapter 7 of [2]. Even for binomials, by which we

mean polynomials of the special form f(X)=aXl+bXJ+c, it is not possible to give a

complete answer, although there are important partial results, summarized below.

Now let f(X)-aXl+bXJ+c with a,b,c e F, card Fffiq, with aO and i>J >I. Clearly f

permutes F if and only if XI-aXj does, where a ba-I. (More generally, for any

polynomial f we are free to alter the constant term, or multiply by a non-zero

element, without affecting whether or not f permutes F, since these two operations

correspond to composing with mappings which are obviously permutations.)

To determine when XI-aXj permutes F(I>J >1) we may assume a0, for monomlals are

easily disposed of:

PROPOSITION I. XI permutes F if and only if g.c.d.(l,q-l)=l.

PROOF. Put =g.c.d(l,q-l). It is immediate, from the fact that the

multlpllcatlve group F* of F is c_cllc of order q-l, that {xllxeF*} {x1xeF*} and

that this set has cardinallty (q-l)/. This proves the claim. (Note, however, that

t=xit is not true that x for each xeF!)
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Similarly, we can reduce to the case where g.c.d.(i,j)=l:

PROPOSITION 2. Let f(X)=Xi-axj

Then g.c.d.(i’,j’)=l, and f permutes F if and only if Xi’-oXj’ permutes F and

g.c.d.(e,q-l)=l.

PROOF. (see [3], lemma 5) f(X) (xe)i’-e(xe)j’ is a permutation polynomial if and

only if both Xe and Xi’-oXj’ are, since the mapping defined by f is the composite of

the mappings given by X
e

and Xi’-gXJ’; now use Prop. I.

thIt is almost trivial to dispose of the case where is an (i-j) power:

PROPOSITION 3. Let f(X)=Xi-oxj, i>j)l,O#seF, d=g.c.d.(i-J,q-l). Suppose =Fi-j

(equivalently, eFd). Then f does not permute F. In particular, f(X)=XI-X is not

a permutation polynomial if any of the following applies: i=j+l; al; -I and i-J

or d is odd; d=l; i-j is a power of char. F.

PROOF. xi-axJ=xJ(xi-J-=) has more than one root if (and only if) s e Fi-J; but

permutation polynomials can have only one root. The "in particular" statements are

all special cases.

In connection with Proposition 3 we mention the following criterion for to be

an (i-j) th power: in the notation of Proposition 3, eEFi-j if and only if e(q-1)/d.l.
This is immediate from the fact that the multipllcative group F* is cyclic of order

q-l: in general, in a cyclic group of order n=kd written multlpllcatlvely, the d
th

powers are exactly the kth roots of unity.

With slightly more effort one can rule out the case q (mod i):

PROPOSITION 4. Let f(X)--xi-exJ,i>j)I,0#=EF, and assume i divides q-l. Then f

does not permute F.

PROOF. We show more generally that when l<ilq-I no polynomial f of degree

permutes F. This follows from a general criterion of (Hermlte and) Dickson (see 7.4

and 7.5 of [2]) but is easy to prove directly from the following well-known fact,

which is also the key ingredient of Dickson’s criterion:

LEMMA 5. For an integer s)l, I xS--o unless (q-l)Is, in which case I xs-- -I.
xeF xeF

PROOF. Put Is I xs Since xq x for all x e F, Is depends only on the
xF

congruence class of s modulo q-l. Thus it suffices to show --0 for ls<q-I (the

result for s=q-I being clear). Choose yeF* with yS#l (e.g., let y be a generator for

the (cyclic) group F*). Then Y’s [ xs= [ (yx)S=yS[s’ so (l-y s) Ys 0; done.
xaF xaF

Now# we complete the proof of (the indicated generalization of) Proposition 4.

f(X) . ajX is a polynomial of degree i, where l<ilq-l, and putSuppose
j=O

s=(q-l)/i. Assume f is a permutation polynomial; we derive a contradiction. On the

one hand, since f permutes F we have 0 Y. (f(x))s by Lemma 5. On the other

q-I xeF

hand, fs has degree q-l, say f(X)
s

cjXj. Then 0 [. (f(x))s ql cj . xj.
j =0 x sF =0 x eF
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xeF q-I

A similar argument gives a further useful criterion, in terms of the parameter

i-J
PROPOSITION 6. Let f(X) -aXj i>jl,0aeF, and put k=i-j. Assume f permutes

F, and suppose (without loss of generality) that i<q-I and k2. Then either iq-l+k,
or (q-l+k)/i is a multiple of p=char. F. The second case cannot arise unless plk-l.

PROPOSITION 6 generalizes [I], Theorem 2.8, which is the special case k-2. The

proof of Proposition 6 is a natural generalization of the proof of Proposition 4; that

is, Lemma 5 is the primary ingredient.

PROOF OF PROPOSITION 6. The last statement is clear since q is a multiple

(actually, a power) of p. Now suppose i lq-l+k, say is q-l+k, so l<s<q-l, and assume

f permutes F; we show pls. Since f(X) xi-axj permutes F we have

s
i s-t )+J t

0 . (xi_ccJ)s . (s) (_a)t . x But i(s-t)+Jt is-kt=q-l+(l-t)k so
t

xeF t=0 xeF

the exponents in the sum, for t=O,l,..., are q-l+k, q-l, q-l-k,... As before, it is

only from t=l that we get a non-zero contribution. But then the equation collapses to

0 sa, a contradiction unless s=0 in F, that is, pls. Done.

The problem of determining when f(X) aXi+bXJ+c is a permutation polynomial is

reduced, by the foregoing elementary observatlons, to the following: flrst, f permutes

xi-axjF if and only xi-axj does, where c ba
-I For ,i>Jl, we may assume i<q-I

and a is not an (i-J) th power (in particular aO, and i*J+l, so l<J<i-l<q-2). We may

assume further that g.c.d.(l,j)=l and iq-l. Finally, put k=i-J, then we may assume

d= g.c.d.(k,q-l) >I and a(q-l)/dl, and either iq-l+k or plg.c.d.(k-l,(q-l+k)/i).

For a concrete example which is not ruled out by any of the foregoing criteria,

consider f(X) X45-aX17 where a is a non-square in the field F with 35 elements.

Here f falls in the second case discussed in Proposition 6, and nothing we have done

so far suffices to answer the question whether f permutes F. Of course that question

can be answered by a finite computation, but what we are after is general criteria,

similar to the above but more far-reaching, which settle the question not for a single

f, but for all f satisfying some hypothesis.

For f of small degree a complete answer can be given from Dickson’s criterion

(cf. [2], page 352):

PROPOSITION 7. With f(X) xi-axj as above and i5, the only permutation

polynomials over F (the field with cardinality q and characteristic p) are as follows:

(i) f(X) X3- aX,p=3, F
2

(ii) f(X) X4 3X,q--7

(iii) f(X) X4- aX,p=2,a F
3

(iv) f(X)=X5
aX,p=5,e F 4,

(v) f(X) X
5

iX, q=9, i 2= -I

(vi) f(X) X
5

2X
2
q=7
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The examples in (i), (ill) a%d (i) generalize:

PROPOSITION 8. Let f(X) Xp -Xp
where s>rO,O#eF, and F has cardlnality q and

characteristic p. Then
r th

(a) f permutes F if and only if is not a (pS_ P power in F;

(b) If a is a primitive root in F (i.e., a generator for the multlpllcative
n

group) then f permutes F, unless p=2 and g.c.d.(s-r,n)=l where q=p

PROOF We have the "only if" part of (a) already, from Proposition 3. Conversely,

suppose f fails to permute F; we show e is a (pS_pr)th power Since f does not

S r s r

s s s r r r s r

k
th

For (b) it suffices to note that a primitive root is never a power unless

rg.c.d.(k,q-l)=l, whereas for k=pS-p we have g.c.d.(k,q-l)>l, with the one exception

indicated in the statement.

REMARK I. Proposition 8 generalizes Proposition 2.10 of [I], where the case r=O is

dealt with. (Of course, this case together with Proposition 2 gives the full story:
r

everything is a prth power, so is a (pS_p)th power if and only if s is a

(pS-r-l)th power.)

REMARK 2. The content of Proposition 8 is the observation that in characteristic
s r

p, f(X)=Xp Xp
is nearly linear: f(X +/- Y)=f(X) +/- f(Y). Hence f permutes F if and

s r
only if f has trivial kernel, that is, a unique root. (Since f(X) Xp -Xp

r s r
Xp (Xp -P-a), f has a unique root if and only if is not a (pS_pr)th power.) This

observation pro[es more generally that when char. F=p, a polynomial of the shape

f(X) [ a Xp (with all exponents powers of p) is a permutation polynomial on F if

and onlf
i
f has no non-zero root in F, for any such f gives a map on F with the same

nearly-linear property as above: f(X +/- Y)=f(X) +/- f(Y). Compare [2], Theorem 7.9.

Examples (ii), (v) and (vi) in Proposition 7 point to a difficulty in the general

problem: the "true" story is obscured by irritating anomalies in small fields

Indeed, at least in the case j=l, we have:

PROPOSITION 9. Let f(X)=Xi-x with i not a power of char. F. Assume

q > (12-41 + 6)
2

Then f permutes F if and only if =0 and g.c d (i,q-1)ul

For the proof see [I], Corollary 3.3., and [3], Lemma 3, page 208. Of course the

"if" part is trivial. The point is that the "only if" part, which we have seen

violated in small examples, becomes true as soon as the field is large enough

(relative to the degree of f).

In fact the same phenomenon (good behavior as soon as the field is sufficiently

large) holds for j>l too, although it is harder to be explicit about the bound:

PROPOSITION I0. Let f(X) xi-xj 0e e F l<j<i g.c.d (i,j)=l There is a

constant C C(i) such that if q>C then f does not permute F.

This is essentially Lemma 7 of [3], to which we refer for the proof.
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An interesting complement to Propositions 9 and I0 is the following result,

proved as Theorem 2 in [4]. Suppose dlq-I and d<q-l. Then, provided q is

sufficiently large, xd+l-uX i__s a permutation polynomial for at least one choice of

3. CONCLUSIOn.

In a sense, the results summarized above provide a complete answer to our

question of when f(X) Xi uXj permutes F: Use Proposition 2 to reduce to the case

where g.c.d.(i,j) I, and then refer to Propositions 8 or 9 (if J I) or Proposition

10 (if J > I). In either case we find essentlally that f can permute F only if F is

one of a finite family of finite fields.

Thus for fixed f(X) Xi uXj our question loses interest as soon as q is

sufficiently large relative to i. Nonetheless, it would be of interest to have

criteria, in addition to the elementary ones discussed here, to better handle the

question in those small fields not ruled out by Proposition 9 and (an explicit version

of) Proposition I0. One reason for the desirability of such criteria is that

permutation polynomials do arise in applications of finite fields. Of special

significance in this regard are the cogplete mapping polynomials over F (see [3]).

These are permutation polynomials f such that f(X) + X is also a permutation

polynomial. For our binomials f(X) Xi-uXJ,f(X) + X is not a binomial unless

Thus, criteria for Xi-uX to permute F, for those small fields not ruled out by

Proposition 9, would enable us to discuss complete mapping binomials of the same

shape. For further results in this direction, especially in the case lffi(q+l)/2, q odd,

see [3], 3 as well as [2], 7.11 and 7.13.
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