ORTHODOX T-SEMIGROUPS

M.K. SEN

Department of Pure Mathematics 35, Ballygunge Circular Road Calcutta - 700 019, India

N.K. SAHA

Department of Mathematics Pingla Thana Mahavidyalaya P.O. Maligram, Dist. Midnapore Pin - 721 140, India

(Received December 7, 1988)

ABSTRACT. Let $M = \{a, b, c, ...\}$ and $\Gamma = \{\alpha, \beta, \gamma, ...\}$ be two non-empty sets. M is called a Γ -semigroup if a cb ϵ M, for $\alpha \in \Gamma$ and $b \in M$ and $(a cb)\beta c = a c(b \beta c)$, for all a, b, c ϵ M and for all $\alpha, \beta \in \Gamma$. A semigroup can be considered as a Γ -semigroup. In this paper we introduce orthodox Γ -semigroups and extend different results of orthodox semigroups to orthodox Γ -semigroups.

KEY WORDS AND PHRASES. Semigroup, F-semigroup, Orthodox F-semigroup, Inverse F-semigroup. 1980 AMS SUBJECT CLASSIFICATION CODE. 20M.

1. INTRODUCTION.

Let A and B be two non-empty sets, M the set of all mappings from A to B, and Γ a set of some mappings from B to A. The usual mapping product of two elements of M can not be defined. But if we take f, g from M and α from Γ then the usual mapping product fog can be defined. Also we find that fog ϵ M and (fog) β h = fog(g β h) for f,g,h ϵ M and α , $\beta \in \Gamma$.

If M is the set of mxn matrices and Γ is a set of some nxm matrices over the field of real numbers, then we can define $A_{m,n} \alpha_{m,n} B_{m,n}$ such that

 $(A_{m,n}, \alpha_{n,m}, B_{m,n}) \beta_{n,m} C_{m,n} = A_{m,n} \alpha_{n,m} (B_{m,n}, \beta_{n,m}, C_{m,n})$ where $A_{m,n}, B_{m,n}, C_{m,n} \in M$ and

 $\alpha_{n,m}$, $\beta_{n,m} \in \Gamma$. An algebraic system satisfying the associative property of the above type is a Γ -semigroup (Saha [1]).

DEFINITION 1.1. Let $M = \{a, b, c, ...\}$ and $\Gamma = \{\alpha, \beta, ...\}$ be two non-empty sets. M is called a Γ -semigroup if (i) a $\alpha b \in M$ for $\alpha \in \Gamma$ and a, b $\in M$ and (ii) (a αb) $\beta c = a \alpha (b \beta c)$, for all a, b, c $\in M$ and for all $\alpha, \beta \in \Gamma$.

A semigroup can be considered a Γ -semigroup in the following sense. Let S be an arbitrary semigroup. Let l be a symbol not representing any element of S. Let us extend the given binary relation in S to SU l by defining ll = l and la = al = a for all a in S. It can be shown that SUl is a semigroup with identity element l.

Let $\Gamma = \{1\}$. Putting ab = alb it can be shown that the semigroup S is a Γ -semigroup where $\Gamma = \{1\}$. Since every semigroup is a Γ -semigroup in the above sense, the main thrust of our work is to extend different fundamental results of semigroups to Γ -semigroups. In Sen and Saha [2] and Saha [1,3,4] we have extended some results of semigroups to Γ -semigroups. In this paper we want to introduce orthodox Γ -semigroups and we want to extend results of Hall [5] and Yamada [6] to Γ -semigroups.

2. PRELIMINARIES.

We recall the following definitions and results from [1], [2], [3] and [4].

DEFINITION 2.1. Let M be a Γ -semigroup. A non-empty subset B of M is said to be a Γ -subsemigroup of M if B Γ B \subset B.

DEFINITION 2.2. Let M be a Γ -semigroup. An element a ϵ M is said to be regular if a ϵ a IM Γ a, where a IM Γ a = {a α b β a: b ϵ M, α , $\beta \in \Gamma$ }. A Γ -semigroup M is said to be regular if every element of M is regular.

EXAMPLE 2.1. Let M be the set of 3x2 matrices and Γ be a set of some 2x3 matrices over a field. We show that M is a regular Γ -semigroup. Let A ϵ M, where A = $\begin{pmatrix} a & b \\ c & d \\ e & f \end{pmatrix}$ Then we choose B ϵ Γ according to the following cases such that ABABA = ABA = A.

CASE 1. When the submatrix $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ is non-singular, then ad - bc \neq 0. e,f may both be 0 or one of them is 0 or both of them are non-zero.

Then B =
$$\begin{pmatrix} \frac{d}{ad-bc} & \frac{-b}{ad-bc} & 0 \\ \frac{-c}{ad-bc} & \frac{a}{ad-bc} & 0 \end{pmatrix}$$
 and we find ABA = A.
CASE 2. af- be $\neq 0$. Then B = $\begin{pmatrix} \frac{f}{af-be} & 0 & \frac{-b}{af-be} \\ \frac{-e}{af-be} & 0 & \frac{a}{af-be} \end{pmatrix}$ and ABA = A.
CASE 3. cf - de $\neq 0$. Then B = $\begin{pmatrix} 0 & \frac{f}{cf-de} & \frac{-d}{cf-de} \\ 0 & \frac{-e}{cf-de} & \frac{c}{cf-de} \end{pmatrix}$ and ABA = A.

CASE 4. When the submatrices are singular. Then either $\begin{cases} ad - bc = 0 & or \\ cf - bc = 0 & cf - be = 0 \end{cases}$

528

If all the elements of A are 0, then the case is trivial. Next we consider at least one of the elements of A is non-zero, say $a_{ij} \neq 0$, i = 1,2,3 and j = 1,2. Then we take the b_{ji} th element of B as $(a_{ij})^{-1}$ and the other elements of B are zero and we find that ABA = A. Thus A is regular. Hence M is a regular Γ -semigroup.

DEFINITION 2.3. Let M be a Γ -semigroup. An element $e \in M$ is said to be an idempotent of M if there exists an $\alpha \in \Gamma$ such that $e \alpha e = e$. In this case we shall say e is an α -idempotent.

DEFINITION 2.4. Let M be a Γ -semigroup and a ϵ M. Let b ϵ M and $\alpha, \beta \epsilon \Gamma$. b is said to be an (α, β) inverse of a if a = a $\alpha b \beta a$ and b = b $\beta a \alpha b$. In this case we shall write b $\epsilon V^{\beta}_{\alpha}(a)$.

DEFINITION 2.5. A regular Γ -semigroup M is called an inverse Γ -semigroup if $|\nabla^{\beta}_{\alpha}(a)| = 1$, for all a ε M and for all $\alpha, \beta \in \Gamma$, whenever $\nabla^{\beta}_{\alpha}(a) \neq \phi$. That is, every element a of M has a unique (α, β) inverse whenever the (α, β) inverse of a exists.

THEOREM 2.1. Let M be a Γ -semigroup. M is an inverse Γ -semigroup if and only if (i) M is regular and (ii) if e and f are any two α -idempotents of M then e αf = f αe , where $\alpha \in \Gamma$.

LEMMA 2.2. Let M be a regular Γ -semigroup and let M' be a Γ '-semigroup. Let (f,g) be a homomorphism from (M, Γ) onto (M', Γ '). Then M' is a regular Γ '-semigroup.

3. ORTHODOX I-SEMIGROUP.

DEFINITION 3.1. A regular Γ -semigroup M is called an orthodox Γ -semigroup if for e an α -idempotent and f a β -idempotent then e αf , for are β -idempotents and e βf , f βe are α -idempotents.

EXAMPLE 3.1. Let A = {1,2,3} and B = {4,5}. M denotes the set of all mappings from A to B. Here members of M will describe the images of the elements 1,2,3. For example the map 1+4, 2+5, 3+4 will be written as (4,5,4) and (4,4,5) denotes the map 1+4, 2+4, 3+5. Again a map from B+A will be in the same fashion. For example (1,2) denotes 4+1, 5+2. Now, M = {(4,4,4), (4,4,5), (4,5,4), (4,5,5), (5,5,5), (5,4,5), (5,4,4), (5,5,4) }. Let $\Gamma = {(1,1), (1,2), (1,3), (2,1), (2,2), (3,3)}$ be a set of some mappings from B to A. Let f,g \in M and $\alpha \in \Gamma$. Under the usual mapping composition, fog is a mapping from A to B and hence fog \in M. Also, we can easily show that (fog) $\beta h = f\alpha(g\beta h)$, for all f,g,h \in M and $\alpha, \beta \in \Gamma$. One can easily verify that M is a regular Γ -semigroup. Here

> (4,4,4) (1,1) (4,4,4) (1,1) (4,4,4) = (4,4,4)(4,4,5) (1,3) (4,4,5) (1,3) (4,4,5) = (4,4,5)(4,5,4) (1,2) (4,5,4) (1,2) (4,5,4) = (4,5,4)(4,5,5) (1,2) (4,5,5) (1,2) (4,5,5) = (4,5,5)(5,5,5) (1,1) (5,5,5) (1,1) (5,5,5) = (5,5,5)(5,4,5) (1,2) (5,4,4) (1,2) (5,4,5) = (5,4,5)(5,4,4) (1,2) (5,4,5) (1,2) (5,4,4) = (5,4,4)

(5,5,4) (1,2) (5,4,5) (1,3) (5,5,4) = (5,5,4)

Here (4,4,5) is (1,3) idempotent, and (5,4,4) is (2,1) idempotent, but (4,4,5) (1,3)(5,4,4) = (5,5,4) is not an idempotent. Hence this regular Γ -semigroup is not an orthodox Γ -semigroup.

EXAMPLE 3.2. Let Q* denote the set of all non-zero rational numbers. Let Γ be the set of all positive integers. Let a ϵQ^* , $\alpha \in \Gamma$ and $b \in Q^*$. acb is defined by |a| ob. For this operation Q* is a Γ -semigroup. Let $\frac{P}{q} \in Q^*$. Now

 $\left|\frac{p}{q}\right|\left|q\right|\left|\frac{1}{p}\right| I \frac{p}{q} = \frac{p}{q}$. Hence this is a regular Γ -semigroup. Here $\frac{1}{q}$, $\left|q\right| \in \Gamma$ is a $\left|q\right|$ idempotent. These are the only idempotents of Q^* . Now $\frac{1}{q}\left|q\right|\frac{1}{p}$ is a $\left|p\right|$ -idempotent. Hence Q^* is an orthodox Γ -semigroup.

THEOREM 3.3. Every inverse I-semigroup is an orthodox I-semigroup.

PROOF. Let M be an inverse Γ -semigroup. Let e be a α -idempotent and f be a β -idempotent. Now eaf ϵ M. Since M is an inverse Γ -semigroup, let $x \in V_{\delta}^{\gamma}(e \alpha f)$. Then ead $\delta x \gamma e \alpha f = e \alpha f$, $x \gamma e \alpha f \delta x = x$. Let $g = f \delta x \gamma e \alpha f$. Then $g \alpha g = g$. Also, let $h = f \delta x \gamma e$. Then, $f \delta x \gamma e \alpha f \beta f \delta x \gamma e \alpha f f f \delta x \gamma e$

EXAMPLE 3.4. In example 3.2 we have shown that Q* is an orthodox Γ -semigroup. Now (1/q) $\varepsilon V_p^1(q/p)$. Also (-1/q) $\varepsilon V_p^1(q/p)$. Hence Q* is not an inverse Γ -semigroup.

THEOREM 3.5. A regular Γ -semigroup M is an orthodox Γ -semigroup if an only if for any α -idempotent $e \in M$, where $\alpha \in \Gamma$, if $V^{\beta}_{\alpha}(e) \neq \phi$ and $V^{\alpha}_{\beta}(e) \neq \phi$, then each member of $V^{\beta}_{\alpha}(e)$ and $V^{\alpha}_{\beta}(e)$ is a β -idempotent.

PROOF. Suppose M is an orthodox Γ -semigroup. Let e be an α -idempotent of M and let x $\in V_{\alpha}^{\beta}(e)$. Then $e\alpha x\beta e = e$ and $x\beta e\alpha x = x$. Now $e\alpha x$ is a β -idempotent and $x\beta e$ is an α -idempotent. Then $x=(x\beta e)\alpha(e\alpha x)$ is a β -idempotent. Next let y $\in V_{\beta}^{\alpha}(e)$. Then $e\beta y\alpha e = e$ and $y\alpha e\beta y = y$. Now $y\alpha e$ is a β -idempotent and $e\beta y$ is an α -idempotent. Then $y = (y\alpha e)\alpha(e\beta y)$ is a β -idempotent. Conversely suppose that M satisfies the given conditions. Let e be an α -idempotent and f be a β -idempotent. Consider $e\alpha f$. Now $e\alpha f \in M$, and since M is regular there exists $x \in M$ and γ , $\delta \in \Gamma$ such that $e\alpha f \gamma x \delta e\alpha f = e\alpha f$ and $x \delta e\alpha f \gamma x = x$. Let $g = f \gamma x \delta e$. Then

g og = f $\gamma(x \delta e \alpha f \gamma x) \delta e$ = f $\gamma x \delta e$ = g. Now, e $\alpha f \beta f \gamma x \delta e \alpha e \alpha f$ = e $\alpha f \gamma x \delta e \alpha f$ and f $\gamma x \delta e \alpha e \alpha f \beta f \gamma x \delta e$ = f $\gamma x \delta e \alpha f \gamma x \delta e$ = f $\gamma x \delta e$. Hence e $\alpha f \in V_{\alpha}^{\beta}(f \gamma x \delta e)$. Then by the given condition e αf is β -idempotent. Dually we can prove that fore is β -idempotent. Similarly, it is easy to see that e βf and f βe are α -idempotents.

THEOREM 3.6. A regular F-semigroup M is an orthodox F-semigroup if and only if

for a, b $\in M$, α_1 , α_2 , β_1 , $\beta_2 \in \Gamma$, a' $\in V_{\alpha_1}^{\alpha_2}(a)$, and b' $\in V_{\beta_1}^{\beta_2}(b)$ we have b' $\beta_2 a' \in V_{\beta_1}^{\alpha_2}(a\alpha_1 b)$ and b' $\alpha_1 a' \in V_{\beta_1}^{\alpha_2}(a\beta_2 b)$.

PROOF. Let us assume that M is an orthodox
$$\Gamma$$
-semigroup. Let $a' \in V_{\alpha_1}^{\alpha_2}(a)$ and
b' $\in V_{\beta_1}^{\beta_2}(b)$. Then $a\alpha_1 a'\alpha_2 a = a$, $a'\alpha_2 a\alpha_1 a' = a'$, $b\beta_1 b'\beta_2 b = b$, and $b'\beta_2 b\beta_1 b' = b'$.
Now a' $\alpha_2 a$ is an α_1 -idempotent and $b\beta_1 b'$ is a β_2 -idempotent. Hence $(a'\alpha_2 a)\alpha_1(b\beta_1 b')$ is
a β_2 -idempotent, and $(b\beta_1 b')\beta_2(a'\alpha_2 a)$ is an α_1 -idempotent. ($a'\alpha_2 a)\beta_2(b\beta_1 b')$ is an
 α_1 -idempotent and $(b\beta_1 b')\alpha_1(a'\alpha_2 a)$ is a β_2 -idempotent.
a $\alpha_1 b\beta_1 b'\beta_2 a'\alpha_2 a\alpha_1 b = a\alpha_1 a'\alpha_2 a\alpha_1 b\beta_1 b'\beta_2 a'\alpha_2 a\alpha_1 b\beta_1 b'\beta_2 b$
 $= a\alpha_1 a'\alpha_2 a\alpha_1 b\beta_1 b'\beta_2 b$ (since $a'\alpha_2 a\alpha_1 b\beta_1 b'$ is β_2 - idempotent)
 $= a\alpha_1 b$.
b' $\beta_2 a'\alpha_2 a\alpha_1 b\beta_1 b'\beta_2 a' = b'\beta_2 b\beta_1 b'\beta_2 a'\alpha_2 a\alpha_1 b\beta_1 b'\beta_2 a'\alpha_2 a\alpha_1 a'$
 $= b'\beta_2 b\beta_1 b'\beta_2 a'\alpha_2 a\alpha_1 a'$ (since $b\beta_1 b'\beta_2 a'\alpha_2 a$ is α_1 - idempotent)
 $= b'\beta_2 a'$.

Hence $b'\beta_2 a' \in V_{\beta_1}^{\alpha_2}(a\alpha_1 b)$. Similarly it can be shown that $b'\alpha_1 a' \in V_{\beta_1}^{\alpha_2}(a\beta_2 b)$. Conversely, assume that the given conditions hold in M. Let e be an α -idempotent and f be a β -idempotent of M. Now $f \in V_{\beta}^{\beta}(f)$ and $e \in V_{\alpha}^{\alpha}(e)$. Then by the given conditions (i) $e \alpha f \in V_{\alpha}^{\beta}(f \beta e)$ and (ii) $e \beta f \in V_{\alpha}^{\beta}(f \alpha e)$. From (i) we get $e \alpha f \beta f \beta e \alpha e \alpha f = e \alpha f$. Then $e \alpha f \beta e \alpha f = e \alpha f$. Thus $e \alpha f$ is a β -idempotent. From (ii) we get $f \alpha e \alpha e \beta f \beta f \alpha e = f \alpha e$. Then $f \alpha e \beta f \alpha e = f \alpha e$. So, f αe is β -idempotent. Again $e \in V_{\alpha}^{\alpha}(e)$ and $f \in V_{\beta}^{\beta}(f)$. Then by the given conditions we get (iii) $f \beta e \in V_{\beta}^{\alpha}(e \alpha f)$ and (iv) f $\alpha e \in V_{\beta}^{\alpha}(e \beta f)$. From (iii) we get $f \beta e \alpha e \alpha f \beta f \beta e = f \beta e$. Hence $f \beta e$ is α -idempotent. From (iv) we get $e \beta f \beta f \alpha e \alpha e \beta f = e \beta f$. So, $e \beta f \alpha e \beta f = e \beta f$. Thus $e \beta f$ is α -idempotent. Hence M is an orthodox Γ -semigroup.

THEOREM 3.7. A regular Γ -semigroup M is an orthodox Γ -semigroup if and only if for a,b $\in M$, $V^{\beta}_{\alpha}(a) \cap V^{\beta}_{\alpha}(b) \neq \phi$ for some $\alpha, \beta \in \Gamma$. This implies that $V^{\delta}_{\gamma}(a) = V^{\delta}_{\gamma}(b)$ for all γ , $\delta \in \Gamma$.

PROOF. Suppose M is an orthodox Γ -semigroup. For a, b \in M, let there exist $\alpha, \beta \in \Gamma$ such that $V^{\beta}_{\alpha}(a) \cap V^{\beta}_{\alpha}(b) \neq \phi$. Let $\gamma, \delta \in \Gamma$. First let us show that $V^{\delta}_{\gamma}(a) \subset V^{\delta}_{\gamma}(b)$. Let $a' \in V^{\beta}_{\alpha}(a) \cap V^{\beta}_{\alpha}(b)$, and $a^* \in V^{\delta}_{\gamma}(a)$. Then $a \circ a' \beta a = a$, $a' \beta a \circ a' = a'$, $b \circ a' \beta b = b$, $a' \beta b \circ a' = a'$, $a \gamma a^* \delta a = a$, $a^* \delta a \gamma a^* = a^*$. We can easily show that

$$(a*\delta a)\alpha(a'\beta b)\mathcal{R}(a*\delta a)$$
. (3.1)

Now a* δa is γ -idempotent, and a' βb is α -idempotent. Hence $(a*\delta a)\,\alpha(a'\,\beta b)$ is

 γ -idempotent. Then from (3.1) we get

$$(a^{*}\delta a)\alpha(a^{'}\beta b)\gamma(a^{*}\delta a) = a^{*}\delta a$$
. (3.2)

(3.3)

Now a' $\beta a = a' \beta a \gamma a^* \delta a = a' \beta a \gamma a^* \delta a o a' \beta b \gamma a^* \delta a = a' \beta a o a' \beta b \gamma a^* \delta a = a' \beta b \gamma a^* \delta a$.

Hence boa' $\beta a = boa'\beta b\gamma a^*\delta a = b\gamma a^*\delta a$.

Again we can show that (boa') $\beta(a\gamma a^*)$, (a γa^*). Now (boa') $\beta(a\gamma a^*)$ is δ -idempotent. Hence (a γa^*) $\delta(boa')\beta(a\gamma a^*) = a\gamma a^*$.

Then a φa' = a γa*δa φa' = a γa*δb φa'βa γa*δa φa' = a γa*δb φa'βa φa' = a γa*δb φa'

$$a \cos^2\beta b = a \gamma a \star \delta b \cos^2\beta b = a \gamma a \star \delta b.$$
 (3.4)

Now, $b\gamma a \star \delta b = b\gamma a \star \delta a\gamma a \star \delta b$

- $= b\gamma a * \delta a \alpha a ' \beta b by (3.4)$ $= b\alpha a ' \beta a \alpha a ' \beta b by (3.3)$ $= b\alpha a ' \beta b = b$ and $a * \delta b \gamma a *$ $= a * \delta a \gamma a * \delta b \gamma a * \delta a \gamma a *$ $= a * \delta a \gamma a * \delta b \alpha a ' \beta a \gamma a * by (3.3)$
 - = a*δa αa'βb αa'βa γa* by (3.4)

= a* δa φa' βa γa* = a* δa γa* = a*.

Hence $a^* \in V_{\gamma}^{\delta}(b)$. Thus $V_{\gamma}^{\delta}(a) \subset V_{\gamma}^{\delta}(b)$. Similarly $V_{\gamma}^{\delta}(b) \subset V_{\gamma}^{\delta}(a)$. Thus $V_{\gamma}^{\delta}(a) = V_{\gamma}^{\delta}(b)$. Conversely, assume that the given condition holds in M. Let e be α -idempotent

and f be β -idempotent. Consider eaf. Since M is regular, there exists γ , $\delta \in \Gamma$ and $x \in M$ such that eaf $\gamma x \delta e \alpha f = e\alpha f$ and $x \delta e \alpha f \gamma x = x$. Let $g = f \gamma x \delta e$. Then $g \alpha g = g$. Hence $f \gamma x \delta e \in V_{\alpha}^{\alpha}(f \gamma x \delta e)$. Let $h = e\alpha f \gamma x \delta e$. Then $h \alpha h = h$. Also, $f \gamma x \delta e \in V_{\alpha}^{\alpha}(e \alpha f \gamma x \delta e)$. Hence $V_{\alpha}^{\alpha}(g) \cap V_{\alpha}^{\alpha}(h) \neq \phi$. Then $V_{\alpha}^{\theta}(g) = V_{\alpha}^{\theta}(h)$ for any $\theta \in \Gamma$. But $e \alpha f \beta f \gamma x \delta e \alpha e \alpha f = e \alpha f$ and $f \gamma x \delta e \alpha e \alpha f \beta f \gamma x \delta e = f \gamma x \delta e$. Hence $e \alpha f \in V_{\alpha}^{\beta}(f \gamma x \delta e)$. Then $e \alpha f \in V_{\alpha}^{\beta}(e \alpha f \gamma x \delta e)$. This implies that $e \alpha f \beta e \alpha f \gamma x \delta e \alpha e \alpha f = e \alpha f$. So $e \alpha f \beta e \alpha f = e \alpha f$. Hence $e \alpha f$ is β -idempotent. Similarly, it can be proved that foe is a β -idempotent and both $e \beta f$ and $f \beta e$ are α -idempotents. Let M be a regular Γ -semigroup and $a, b \in M$, $a' \in V_{\alpha}^{\beta}(a)$, and $b' \in V_{\gamma}^{\delta}(b)$. Then $e = a'\beta a$ is α -idempotent and $f = b\gamma b'$ is δ -idempotent. Let $\theta \in \Gamma$. Suppose $x \in V_{\alpha_1}^{\beta_1}(e \theta f)$. Then $e \theta f = e \theta f \alpha_1 x \beta_1 e \theta f$ and $x = x \beta_1 e \theta f \alpha_1 x$. Let $g = f \alpha_1 x \beta_1 e$. Now $g \theta g = f \alpha_1 x \beta_1 e \theta f \alpha_1 x \beta_1 e = f \alpha_1 x \beta_1 e = g$. Hence g is θ -idempotent.

```
Also goe = g = f \delta g and e \theta g \theta f = e \theta f. Now,
```

```
(a \theta b) \gamma (b' \delta g \alpha a') \beta (a \theta b) = a \theta (b \gamma b') \delta g \alpha (a' \beta a) \theta b = a \theta f \delta g \alpha e \theta b= a \theta f \delta g \theta b = a \theta g \theta b = a \alpha a' \beta a \theta g \theta b \gamma b' \delta b= a \alpha e \theta g \theta f \delta b = a \alpha e \theta f \delta b = a \theta b.
```

Similarly we can show that $(\beta' \delta g \circ a') \beta(a \theta b) \gamma(b' \delta g \circ a') = b' \delta g \circ a'$. Hence b' $\delta g \circ a' \in V_{\gamma}^{\beta}(a \theta b)$. Thus we have the following lemma.

LEMMA 3.8. Let M be a regular Γ -semigroup and a, b \in M. If a' $\in V_{\alpha}^{\beta}(a)$, b' $\in V_{\gamma}^{\delta}(b)$ and $\theta \in \Gamma$, then there exists a θ -idempotent g \in M and b' δ goa' $\in V_{\gamma}^{\beta}(a \theta b)$.

4. INVERSE Γ-SEMIGROUP CONGRUENCE.

DEFINITION 4.1. Let M be a Γ -semigroup. A congruence on M is defined as an equivalence relation ρ on the set M stable under left and right Γ -operations. That is, for every a,b,c ϵ M, (a,b) ϵ ρ implies (coma,cod) ϵ ρ and (aoc,boc) ϵ ρ for all $\alpha \epsilon \Gamma$. A left (right) congruence on M is an equivalence relation on M, stable under left (right) Γ -operation.

Let M be a Γ -semigroup. Let ρ be a congruence on M. We define (a ρ) α (b ρ) = (a α b) ρ for all a ρ , b $\rho \in M/\rho$ and for all $\alpha \in \Gamma$. It can easily be seen that the definition is well defined and M/ ρ is a Γ -semigroup. Let us now characterize the minimum inverse Γ -semigroup congruence on an orthodox Γ -semigroup.

DEFINITION 4.2. Let M be an orthodox Γ -semigroup. A congruence ρ on M will be called an inverse Γ -semigroup congruence if M/ ρ is an inverse Γ -semigroup.

THEOREM 4.1. Let M be an orthodox Γ -semigroup. Then the relation ρ defined by $\rho = \{(a,b) \in M_XM: V^{\beta}_{\alpha}(a) = V^{\beta}_{\alpha}(b) \text{ for all } \alpha, \beta \in \Gamma\} \text{ is the minimum inverse}$ Γ -semigroup congruence on M.

PROOF. From the definition of ρ it is clear that ρ is an equivalence relation. To prove that ρ is a congruence relation, assume that $(a,b) \in \rho$, $c \in M$ and $\theta \in \Gamma$. Then $V^{\beta}_{\alpha}(a) = V^{\beta}_{\alpha}(b)$ for all $\alpha, \beta \in \Gamma$. Hence there exists $\alpha, \beta \in \Gamma$ such that $\nabla^{\beta}_{\alpha}(a) = V^{\beta}_{\alpha}(b) \neq \phi$. Let $a^* \in V^{\beta}_{\alpha}(a) = V^{\beta}_{\alpha}(b)$, $c^* \in V^{\delta}_{\gamma}(c)$. Then by Lemma 3.8 $c^* \delta g \alpha a^* \in V^{\beta}_{\gamma}(a \, \theta c)$ and $c^* \delta g \alpha a^* \in V^{\beta}_{\gamma}(b \, \theta c)$, for some θ -idempotent $g = g \, \theta g \in M$. Hence $V^{\beta}_{\gamma}(a \, \theta c) \cap V^{\beta}_{\gamma}(b \, \theta c) \neq \phi$. Then by Theorem 3.7, $V^{\beta}_{\alpha}(a \, \theta c) = V^{\beta}_{\alpha}(b \, \theta c)$ for all $\alpha, \beta \in \Gamma$, so that (a &c, b &c) $\varepsilon \rho$. Similarly we can show that (c &a, c &b) $\varepsilon \rho$. Hence ρ is a congruence on M. Suppose now $\varepsilon = \varepsilon \omega \varepsilon$ and $f = f \alpha f$ are two idempotents of M. Then $\varepsilon \alpha f$ and $f \alpha \varepsilon$ are α -idempotents and $\varepsilon \nabla_{\alpha}^{\alpha}(\varepsilon \alpha f)$ and $\varepsilon \alpha f \varepsilon \nabla_{\alpha}^{\alpha}(f \alpha \varepsilon)$. Hence $\nabla_{\alpha}^{\alpha}(\varepsilon \alpha f) \cap \nabla_{\alpha}^{\alpha}(f \alpha \varepsilon) \neq \phi$. Consequently $\nabla_{\gamma}^{\delta}(\varepsilon \alpha f) = \nabla_{\gamma}^{\delta}(f \alpha \varepsilon)$ for all γ , $\delta \varepsilon \Gamma$. Thus we find that $(\varepsilon \alpha f, f \alpha \varepsilon) \varepsilon \rho$. Hence from Theorem 2.1 and Lemma 2.2 we find that M/ρ_1 is an inverse Γ -semigroup. Finally, suppose that ρ_1 is a congruence on M such that M/ρ_1 is an inverse Γ -semigroup. If (a,b) $\varepsilon \rho$ then $\nabla_{\alpha}^{\beta}(a) = \nabla_{\alpha}^{\beta}(b)$ for all $\alpha, \beta \varepsilon \Gamma$. There exist $x \varepsilon M$ and $\alpha, \beta \varepsilon \Gamma$ such that $a \alpha x \beta a = a$, $x \beta a \alpha x = x$, $b \alpha x \beta b = b$ and $x \beta b \alpha x = x$. Then $(a \rho_1) \alpha (x \rho_1) \beta (a \rho_1) = a \rho_1, (x \rho_1) \beta (a \rho_1) \alpha (x \rho_1) = x \rho_1, (b \rho_1) \alpha (x \rho_1) \beta (b \rho_1) = b \rho_1,$ $(x \rho_1) \beta (b \rho_1) \alpha (x \rho_1) = x \rho_1$. Hence $a \rho_1$, $b \rho_1 \varepsilon \nabla_{\beta}^{\alpha}(x \rho_1)$. But M/ρ_1 is an inverse Γ -semigroup. Hence $|\nabla_{\beta}^{\alpha}(x \rho_1)| = 1$. Then $a \rho_1 = b \rho_1$, so that $(a, b) \varepsilon \rho_1$. Hence $\rho \subset \rho_1$. This completes the proof.

REFERENCES

- 1. SAHA, N.K., On Γ-semigroup II, Bull. Cal. Math. Soc. 79 (1987), 331-335.
- SEN, M.K. and SAHA, N.K., On F-semigroup I, <u>Bull. Cal. Math. Soc.</u> 78(1986), 180-186.
- 3. SAHA, N.K., On F-semigroup III, Bull. Cal. Math. Soc. 80 (1988), 1-12.
- SAHA, N.K. and SETH, A., Inverse F-semigroup. Accepted for publication in <u>J. of</u> <u>Pure Math.</u> Calcutta University.
- HALL, T.E., On regular semigroups whose idempotents form a subsemigroup, <u>Bull.</u> <u>Australian Math. Soc. I (1967).</u>
- YAMADA, M., Regular semigroups whose idempotents satisfy permutation identities. <u>Pacific J. Math. 21(2)</u> (1967), 371-392.