A PROOF OF POLLACZEK-SPITZER IDENTITY

S. PARAMASAMY

Department of Mathematics The University of the West Indies St. Augustine Trinidad, W.I.

(Received November 27, 1989 and in revised form July 12, 1990)

ABSTRACT. In this note we derive a proof of Pollaczek-Spitzer identity using a generalization of Takacs ballot theorem.

KEY WORDS AND PHRASES. Random walk, ballot theorem, Pollaczek-Spitzer identity. 1980 AMS SUBJECT CLASSIFICATION CODE. 60J15.

1. INTRODUCTION.

Consider the following generalization of Takacs ballot theorem (Takacs [1]): Suppose $k_1, k_2, ..., k_n$, are non-negative integers with sum k < mn for some integer m and let n, be the number of cyclic permutations $(k_{i_1}, k_{i_2}, ..., k_{i_n})$ of $(k_1, k_2, ..., k_n)$ such that $k_{i_1} + k_{i_2} + ... + k_{i_j} \le jm - r$ for all j = 1, 2, ..., n, with equality holding for at least one of these j's, r = 1, 2, ..., m. Then

$$\sum_{r=1}^{m} rn_r = nm - k \tag{1.1}$$

On setting $r_i = m - k_i$, we get the following generalization: Let $r_1, r_2, ..., r_n$ be integers with sum $s \ge 1$ and let n_r be the number of cyclic permutations in which all the partial sums are greater or equal to r with at least one sum equal to r. Then

$$\sum_{r=1}^{s} rn_{r} = s$$
 (1.2)

PROOF of (1.1). Consider *n* boxes arranged in a circle and numbered 1 to *n* in the clockwise direction. Initially box *i* contains k_i balls. Starting from box *n* search the boxes in the anti-clockwise direction and should a box contain m + r balls for some r > 0, then remove *r* balls from the box containing these m + r balls and place them in the box that follows immediately in the anti-clockwise direction. Repeat the above steps until the number of balls contained in each box is less than or equal to *m*. Let B_i be the number of balls contained in box *i* after the re-allocations as specified are completed and let n_i be the number of integers among $B_1, B_2, ..., B_n$ which are equal to m - i, i = 0, 1, ..., m. Since $\Sigma(m - i)n_i = k$ and $\Sigma n_i = n$, we have $\Sigma in_i = nm - k$.

Let $k_{n+i} = k_i$ and $S_{ij} = k_i + k_{i+1} + \dots + k_{i+j}$, $i, j = 1, 2, \dots, n$. Then $B_i = m - r$, $1 \le r \le m$, if and only if $S_{ij} \le jm - r$ for all j with at least one index t for which $S_{ii} = tm - r$. To prove this assume without loss of generality that i = 1. Suppose $B_1 = m - r$, $1 \le r \le m$, and $S_{1i} > tm - r$ for some $t \ge 2$. Then we must

have $B_i = B_{i-1} \dots = B_2 = m$ and $B_1 > m - r$, a contradiction. So $S_{ij} \le jm - r$ for all $j \ge 1$. Suppose $S_{ij} < jm - r$ for all j. Then we must have $k_1 \le m$ and $k_i \le m$ for all $i \ge 2$, which implies that $B_1 < m - r$, a contradiction. Now (1.1) follows immediately.

2. POLLACZEK-SPITZER IDENTITY.

Using (1.2), we give a proof of the well-known Pollaczek-Spitzer identity (2.1). This proof appears to be new. To keep the arguments simple, we consider integer-valued random variables only.

THEOREM. Let X_i , i = 1, 2, ..., be an infinite sequence of independent and identically distributed integer-valued random variables; $S_n = X_1 + X_2 + ... + X_n$; $m_{i,j}$ and $M_{i,j}$, the minimum and maximum respectively of $X_i, X_i + X_{i+1}, ..., X_i + X_{i+1} + ... + X_{i+j}$;

$$F_{i} = \sum_{s=1}^{\infty} \exp(-\lambda s) P\{S_{i} = s\}/i, \qquad i = 1, 2, ...; \quad \lambda \ge 0$$

$$G_{i} = \sum_{s=1}^{\infty} \exp(-\lambda s) P\{M_{1,i-1} \le 0, S_{i} = s\}, \qquad i = 1, 2, ...; \quad \lambda \ge 0$$

$$F = \sum_{i=1}^{\infty} t^{i}F_{i}, \quad G = \sum_{i=1}^{\infty} t^{i}G_{i}, \quad 0 < t < 1$$

Then

$$F = -\log(1 - G) \tag{2.1}$$

PROOF. By (1.2), we have

$$\sum_{j} j P\{m_{1,s} - j \mid S_s = s\} = s/n$$
(2.2)

provided the conditional probability exists. Now for r < s,

$$\{m_{1,n} = r \mid S_n = s\} = U[\{(m_{1,i} = r \mid S_i = s - t) \cap (S_i = s - t)\} \cap \{m_{i+1,n} = t \mid S_n - S_i = t\}]$$
(2.3)

where the union is over all $i \ge 1$ and all $1 \le t \le s - r$. Also note the easily verifiable duality property

$$P\{m_{1,n} - s | S_n - s\} = P\{M_{1,n-1} \le 0 | S_n - s\}$$
(2.4)

Consequently, using (2.3) and (2.4), we have for r < s,

$$P\{m_{1,n} - s \mid S_n = s\} = P\{m_{1,i} = r \mid S_i = s - t\}P\{S_i = s - t\}P\{M_{i+1,n-1} \le 0 \mid S_n - S_i = t\}$$
(2.5)

So multiplying (2.5) by $r \le s - 1$, adding the quantity $P\{m_{1,n} = s \mid S_n = s\}$ to both sides of the equation, and summing, we get, by (2.2),

$$s/n = s P\{M_{1,n-1} \le 0 \mid S_n = s\} + \sum_{i,i} \frac{(s-t)}{i} P\{S_i = s-t\} P\{M_{i+1,n-1} \le 0 \mid S_n - s_i = t\}$$

which implies that

$$sP\{S_{n} = s\}/n = sP\{M_{1,n-1} \le 0 \mid S_{n} = s\}P\{S_{n} = s\}$$
$$+ \sum_{i,t} \frac{(s-t)}{i}P\{S_{i} = s-t\}P\{M_{i+1,n-1} \le 0 \mid S_{n} - S_{i} = t\}P\{S_{n} - S_{i} = t\}$$
(2.6)

Then multiplying (2.6) by $exp(-\lambda s)$ and summing over all $s \ge 1$, we obtain

$$F_{n}' = G_{n}' + \sum_{i=1}^{n-1} F_{i}' G_{n-i}$$
(2.7)

where

 $F_i' = dF_i/d$ and $G' = dG_i/d$. Multiplying (2.7) by t^* , 0 < t < 1, and summing over n = 1, 2, ..., we have

$$\sum_{i} t^{i} F_{i} = \left(\sum_{i} t^{i} G_{i}^{\prime}\right) / (1 - G)$$

So integrating, we get the identity (2.1). (Let $\lambda \rightarrow \infty$ to show that the arbitrary constant is zero.)

Proofs of (2.1) and other closely related results can be found in the references [2] - [10].

ACKNOWLEDGEMENT. The author would like to thank the anonymous referee for pointing out some notable omissions in the original reference list.

REFERENCES

- 1. TAKACS, L. <u>Combinatorial Methods in the Theory of Stochastic Processes</u>, John Wiley and Sons, 1974.
- 2. BAXTER, G. An Operator Identity, Pacific J. Math 8 (1958), 649-663.
- 3. BAXTER, G. An Analytic Approach to Finite Fluctuation Problems in Probability Theory, Jour d' Analyse Math, 9 (1961), 31-70.
- 4. FELLER, W. <u>An Introduction to Probability Theory and Its Applications</u>, Vol. 2, Chap. 18, John Wiley and Sons, 1966.
- 5. KARLIN, S. and TAYLOR, H. M. <u>A Second Course in Stochastic Processes</u>, Chap. 17, Academic Press, 1981.
- POLLACZEK, F. Functions caracteristiques des certaines repartitions definies au moven de la notiond'ordre. Application a la theorie des attentes, <u>C. R. Acad. Sci. Paris 234</u> (1952), 2334-2336.
- SPITZER, F. L. A Combinatorial Lemma and its Application to Probability Theory, <u>Trans. Am.</u> <u>Math. Soc. 28</u> (1956), 329-339.
- 8. SPITZER, F. L. Principles of Random Walk, Chap. 4, Springer-Verlag, 1976.
- 9. TAKACS, L. On Fluctuations of Sums of Random Variables, <u>Advances in Mathematics</u>, Supplementary Studies 2 (1978), 45-93.
- 10. WENDEL, J. G. Spitzer's Formula: A Short Proof, Proc. Amer. Math. Soc. 9 (1958), 905-908.