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ABSTRACT. In this note we derive a proof of Pollaczek-Spitzer identity using a generalization ofTakacs

ballot theorem.
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1. INTRODUCTION.

Consider the following generalization of Takacs ballot theorem (Takacs ]): Suppose k, k. k,,,

are non-negative integers with sumk < mn for some integer tn and letn, be the numberofcyclic permutations

(kl,k ki,)of (kl, k.z, ...,k,) such that kil + k6 + + k jm r for all j 1,2 n, with equality holding
for at least one of these j’s, r 1,2 ,m. Then, rn,-nm-k (1.1)

On setting r tn ki, we get the following generalization: Let r, r2,..., r,, be integers with sum s and

let n, be the number of cyclic permutations in which all the partial sums are greater or equal to r with at

least one sum equal to r. Then

rn,-s (1.2)

PROOF of (1.1). Consider n boxes arranged in a circle and numbered 1 to n in the clockwise

direction. Initially box contains k balls. Starting from box n search the boxes in the anti-clockwise

direction and should a box contain tn + r balls for some r > 0, then remove r balls from the box containing

thesem + r balls and place them in the box that follows immediately in the anti-clockwise direction. Repeat
the above steps until the number of balls contained in each box is less than or equal to m. Let B be the

numberofballs contained in box after the re-allocations as specified are completed and let nl be the number

of integers amongB,B2, B,, which are equal to m i, 0,1 m. Since E (m i)ni k and En n,

we have E ini -nm k.

Letk,/i-kiand So-ki+ki+l+... +ki+j, i,j- 1,2 n. Then Bi-m-r 1 r m, ifandonly

if Sii jm r for all j with at least one index for which S, tm r. To prove this assume without loss

of generality that 1. Suppose B m r, 1 r m, and S, > tm r for some > 2. Then we must
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have Bt-B,_t B2.m and Bt>m-r, a contradiction. So So<jm-r for all j>l. Suppose
S0 < jm r for all j. Then we must have kt m and ki g m for all 2, which implies that Bt < m r, a

contradiction. Now (1.1) follows immediately.
2. POLLACZEK-SPITZER IDENTITY.

Using (1.2), we give a proof of the well-known Pollaczek-Spitzer identity (2.1). This proof appears
to be new. To keep the arguments simple, we consider integer-valued random variables only.

THEOREM. Let X, 1, 2 be an infinite sequence of independent and identically distributed

integer-valued random variables; S,-X1 +X2 + +X,; mi. and Mi., the minimum and maximum

respectively ofX/,X/+X/+,...,X/+X,./ + +X/+j;

F,- , exp(-Xs)P{S,-s}/i, i- 1,2 ,; .>0

G,- X exp(-)P{Mt.,-t O,S-s}, 1,2,...;

F tF, G- , G, 0 < < 1
-1 -1

Then

F log(1 -G) (2.1)

PROOF. By (1.2), we have

XJ P{ml.. "J IS. -s} -s/n (2.2)

provided the conditional probability exists. Now for r < s,

{mx..-rlS..s}.u[{(mt.,-rlS,-s-t)n(s,-s-t)}n{m,/l,.-tls.-$,-t}] (2.3)

where the union is over all z 1 and all 1 s r. Also note the easily verifiable duality property

P{m.. -sis s} P{M.._ OIS s} (2.4)

Consequently, using (2.3) and (2.4), we have for r < s,

P{mL.-s IS. -s} -P{ml,,-r IS,-s-t}P{S,-s-t}P{M,/t.._ <OIS.-S,-t} (2.5)

So multiplying (2.5) by r s 1, adding the quantity P{mr,. s S. s } to both sides ofthe equation, and

summing, we get, by (2.2),

s/n -s P{M.._t gO IS. -s} +
(s -t)p{s -s -t}P{M/t.._t O IS -s -t}

which implies that

s P{S. -s}ln -s P{M,._t .:0 IS. -s}P{S. -s}

+ (s-t)p{S,’s-t}P{M,/,.. OIS.-S,’t}P{S.-S,’t} (2.6)

Then multiplying (2.6) by exp(-,a) and summing over all s a 1, we obtain

F,,’- G,,’ + , Fi’G,, _, (2.7)

where

F/-dFdd and G’-dGdd. Multiplying (2.7) by ", 0 <t < 1, and summing over n 1,2 we have
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So integrating, we get the identity (2.1). (Let k oo to show that the arbitrary constant is zero.)

Proofs of (2.1) and other closely related results can be found in the references [2] [10].
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