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INTRODUCTION
In the literature on order and topology (ordered topological spaces, topological lat-

tices, order-determined topologies, etc.) connectivity has generally been introduced as a

topological property. Given some natural compatibility between topology and order, much
is known about the impact different connectivity properties have on the order in question.
Classical theory (in case of total order), as well as [2], [4], and [5], have revealed the close
relationship between topological connectivity on one hand and the order-theoretical prop-
erties "conditionally complete" and "order dense" on the other. The aim of this note is

to define a concept of order-theoretical connectivity (using conditional completeness and

order density), and then to apply this concept to the theory of ordered topological spaces.

First, some relevant remarks on (partial) order and connectivity will be given.
A triple S (S,r,o) consisting of a set, an order o and a topology r on that set

is called an ordered topological space. The space S is called order-connected (cf. [1]) if
all order-preserving continuous maps from S to the space 2 are constants (2 _-- the set

{0,1} endowed with discrete topology and natural order); connected (path-connected) if
it is connected (path-connected) as a topological space; and link-connected if any two

points of S can be joined by a finite set of connected links of S (link between x and y
maximal chain of Ix, y]). A class C of subsets of a given set S is called a connectivity

system (cf. [2]) if any set A C_ S is a member of C whenever for all x, y E A there are sets

C1,C2,...,C, C in A with x Cl,y C,,, and CiNCi+I for 1,2,...,n- 1.

The classes of order-connected, or connected, or path-connected, or link-connected sets

constitute connectivity systems.
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An ordered topological space is a Ti-ordered space (an i-space) if every ma:dmal chain
inherits a topology which is finer than or equal to (which coincides with) its own interval

topology (see [2], [5]). Note that for any lattice all topologies between the interval topology
and Birkhoff’s order topology are i-topologies (cf. [5]).

"Conditionally complete" and "order dense" will be abbreviated "cc" and "od", re-

spectively. A subchain of an ordered set is called cc (od) if it is cc (od) regarded as an

ordered space in its own right. It is important to recall that

(A) a chain is connected in its interval topology iff it is od and cc;
(B) art ordered set is od (cc) iff all mazimal chains of it are od (cc);
(C) art od and cc chain between two points of a given ordered set is always a complete link.

1. ORDER-THEORETICAL CONNECTIVITY
Let P be an arbitrary poset. Regard the equivalence relation ,ord defined in P by

a ,,ord b === a and b are joined by a finite set of od and cc links in P.
The ,,ord classes are called the order-theoretical components in P. In case of only one

equivalence class, P is order-theoretically connected. The order-theoretically connected
subsets (defined in the obvious way) of any poset are a connectivity system in the scnse of

[2]. Morcover, a poset is order-theoretically connected iff it is link-connected in its interval

topology (or equivalently, in any of its i-structures).

PROPOSITION 1. For any a E P, the order-theoretical component ofa equals the maximal
order-theoretically connected subset of P containing a.

LEMMA 2. Irt any product poser P IIPi, all projections of an od and cc link J are od
and cc links.

PaOOF. For a topological proof, endow P and the Pi’s with Birkhoff’s order topology
o, note that J is a connected set in o(P) and that all projections are continuous maps

o(P) --, o(Pi). Thus pri(J) is a connected chain in o(Pi), and since pr(g) carries a

structure which is finer than its own interval topology it is an od and cc chain.

PROPOSITION 3. The product poser P =_ P1 x P2 x... x Pn is order-theoretically connected

iff every factor is. The order-theoretical component of a =_ (al,a2,...,an) P equals the
product of the order-theoretical components of the ak’s (k 1, 2,..., n).

Prtoor. To see the first part for n 2, take a2 q P2, express the product set P x P2
as Ja, epl[(P1 x {a2}) U ({el} x P2)], and use Lemma 2. Then proceed via induction over

the natural numbers. The remaining part is straightforward.

EXAMPLE 4 (denumerable products). Consider the Euclidean plane, let l, denote the
line segment (y -, 0 < x < 1) and m the line segment connecting the right endpoint of
l, and the left endpoint of lk+l. Define the lattice L to be the union of all the Ik’s and m’s
(k fi Z+) endowed with the natural order of the plane. Obviously, L is order-theoretically

connected. To see that the product lattice P =- Lz+ is not, take pairs of points am, b, in

L which can be joined by a set of no less than n od and cc links of L and note (a,) (b,)

is not satisfied in P (use Lemma 2).

EXAMPLE 5 (basic remarks). The od and cc lattices form a class of order-theoretically

connected structures which is closed under formation of arbitrary products. A lattice is

od and cc iff all maximal chains (or all links) are order-theoretically connected. As was

demonstrated in Lemma 2, projections preserve order-theoretical connectivity. However,
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a lattice with prime ideals (for instance any distributive lattice) allows a lattice-morphisn

onto the lattice 2. This shows that order-theoretical connectivity cannot be characterized

via morphisms (and, of course, that morphisms do not preserve order-theoretical connec-

tivity). Cantor’s teepee (cf. [3]) with base interval [0, 1] and top (1,1)is a connected

subset of R2; nevertheless, all its order-theoretical components are singletons (which is

a quite natural order-theoretical property of this structure). Finally, note that the topo-

logical closure of the lattice L of Example 4 (the Euclidean topology) consists of two

order-theoretical components, although L is order-theoretically connected.

In ordered topological spaces S, order-theoretical connectedness relates to path-
connectedness, as demonstrated below.

PROPOSITION 6. Suppose each x E S has an order-theoretically connected nezghborhood.
Then S is order-theoretically connected if S is path-connected.

PROOF" Suppose x, y E S and p" I --. S is a path between x and y. For each z p(I),
let Nz be an order-theoretically connected neighborhood of z, and let -lz C_ Nz be an

open neighborhood of z. Consider {Ni}’=l where {M’i}’=l is a subcover of p(I) from

{Mz z p(I)}. Now (Ui=iNi)k CI (Ll=k+1Ni) # $ for any 1 _< k <_ n, for otherwise

p-l(Ui=Mi Up-l(Ui=k+x}Ii) would separate I for some k. Since the order-theoretically
connected subsets of S form a connectivity system, it follows that x and y are in the same

order-theoretical component and thus S is order-theoretically connected.

An obvious sufficient condition for order-theoretical connectedness to imply path-
connectedness is that every cc and od link frown x to y be a path from x to y. Applying
this and the proposition we finally get

COROLLARY 7. An open subset of R is path-connected iff it is order-theoretically

connected, given the usual topology and order on Rn.

2. T-CONNECTIVITY
Order-theoretical connectedness is now employed to create a natural connectivity con-

cept in the category of (partially) ordered topological spaces and order-preserving contin-

uous maps (here called morphisms).

Let T denote an ordered topological space.

The ordered topological space S is called T-connected if for every morphism S T
the image T(S) is an order-theoretically connected set in T. A subset of an arbitrary
ordered topological space is a T-connected set if it is a T-connected space (regarded as a

subspace). Every ordered topological space can be partitioned into maximal T-connected
sets, the T-components of the space.

Obviously, the T-connected sets in any ordered topological space form a connectiv-

ity system in the sense of [2]. T-connectivity provides the realm for several well-known
connectivity concepts. For instance, an ordered topological space is order-connected iff
it is 2-connected. As a special case of this, note that a topological space is connected in

the classical sense iff it is a 2-connected ordered topological space when equipped with

the discrete order. A connected space endowed with any order is always an R-connected
ordered topological space.
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PROPOSITION 8. Let S be a Ti-ordered topological space. Consider the following state-
mcnts

(1) S is link-connected;
(2) S is T-connected for all Ti-ordered topological spaces T;
(3) S is S-connected;
({) S is order-theoretically connected.

Implications (1) = (2) = (3) (4) are always true. If S is an i-space, then (4) = (1).
PROPOSITION 9. Everything stated in Proposition 3 holds for T-connectivity; moreover,

T-connectivity is preserved by morphisms (the choice of T is arbitrary, throughout).

EXAMPLE l0 (denumerable products). The cc lattice L of Example 4 endowed with
Euclidean topology is T-connected for all Ti-ordered topological spaces T (cf. Proposition
8). The product lattice P _= LZ+ endowed with product topology is an i-space. Since
the space P cannot be link-connected (pick elements (a,,),(b,) e P as in Example 4),
Proposition 8 guarantees the existence of at least one Ti-ordered space T, for which P is
not T-connected.

EXAMPLE 11 (basic remarks). The set L of the previous example is an R2-connected
set in the Euclidean plane. However, the closure of L (denoted by /) consists of two
R2-components, one of which fails to be a closed set in the space /. Also, note that
any T3,5 topological space endowed with discrete order is totally R2-disconnected (i.e. all
R2-components consist of only one point).

Again let T be any ordered topological space.

PROPOSITION 12. A connected ordered topological space S, in which every point has a
T-connected neighborhood, is T-connected.

PROOF. For x, y E S, let x ,,T y denote that for all morphisms T S ---, T the points
(x), (y) are joined by a finite set of od and cc links in (S). Take a E S, define the
subset A of S by x A ==> x ,,,T a, and prove A S by showing A is open and closed

as follows. First, take b A and let V be a T-connected neighborhood of b. For any

x V, x,,T b,,T a, andthusx A. Then, forbin the closure of A and V as above,
A fq V # ) and every x E A f’l V satisfies b ,,T x ,,T a, which implies b A.
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