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ABSTRACT. Let X be an abstract set and .t; a lattice of subsets ofX. To each lattice-regular measure

we associate two induced measures and on suitable lattices of the Wallman space Is(L) and another

measure IX’ on the space I,(L). We will investigate the reflection of smoothness properties of IX onto t,
and Ix’ and try to set some new criterion for repleteness and measure repleteness.
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1. INTRODUCTION.

LetX be an abstract set andL a lattice subsets ofX. To each lattice regular measure Ix, we associate

following Bachman and Szeto [1] two induced measures ! and I on suitable lattices of subsets of the

Wallman space Is(L) of (X,,); we also associate to Ix a measure Ix’ on the space I(L) (see below for

definitions).
We extend the results of [1], by further investigation of the reflection of smoothness properties of

Ix onto ! and Ix’ and investigate more closely the regularity properties of 6 and (see in particular
theorems 4.7, 4.8, 4.9, 5.4, and 5.6). We are then in a position to get new criterion for repleteness and

measure repleteness etc. These general results are then applied to specific lattices in a topological space
to obtain some new and some old results pertaining to measure compactness, real compactness, t-real

compactness, ets...in an entirely different manner.

We give in section 2, a brief review of the lattice notation and terminology relevant to the paper.
We will be consistent with the standard terminology as used, for example, in Alexandroff [2], Frolik [3],
Grassi [4], N6beling [5], and Wallman [6].

We also give a brief review of the principal Theorems of [1] that we need in order to make the

paper reasonably self-contained.

2. DEFINITIONS AND NOTATIONS.

LetXbe an abstract set, then c. is a lattice ofsubsets ofX; ifA,B CX thenA t0B ( , andA fiB E L.

Throughout this work we will always assume that O and X are in z;. IfA CX then we will denote the

complement ofA byA’ i.e.A’ X -A. if/; is a Lattice of subsets ofX then z;’ is defined Z;’ {L’ L E z;}.
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Lattice Terminology

DEFINITIONS 2.1. Let be a Lattice of subsets ofX. We say that:

1- is a 6-Lattice if it is closed under countable intersections.

2- is separating or T1 ifx,y X;x ,y then IL such thatx L and), L.
3- is Hausdorff or T2 ifx,y X;x , y then 4,B

4- is disjunctive if for x X and L where x fL;A,B such that x A,L CB and

AB -0.

5- isregularifforx_X,L .andxqL;4,B .f_,suchthatx.A’,L CB’ andA’f3B’- O.

6- is normal if forA,B whereA f3B

7- is compact ifX U L’, where L, E then there exists a finite number of L, that cover X i.e.

X L’ where .
8- is countably compact if forX- L’ thenX- L’.

-1 -1

9- is Lindel6f ifX U L, a A thenX U L’ whereL .
i-1

10- is countably paracompact iffor every sequence {L, } in such thatL, O there exists a sequence
{/,, } in such that L,, C/’,, and/’,,

11- is complemented ifL then L’
12- is complement generated ifL

then L ’ whereL .
i-1

13- is T if it isnormal and T1.
14- is T if it is completely regular and

A() the algebra generated by .
o() the o-algebra generated by the .
6()- the Lattice of countable intersections of sets of.
;() the Lattice of arbitrary intersection of sets of.
p()- the smallest class containing and closed under countable unions and intersections.

IfA .1() thenA (Li ’i) where the union is disjoint and Li,/-i . IfX is a topological space

we denote:

o Lattice of open sets

Y"- Lattice of closed sets

,5 Lattice of zero sets of continuous functions

K- Lattice of compacts sets, withX adjoined
Lattice of clopen sets

Measure Terminology

Let be a lattice of subsets ofX. M()will denote the set of finite valued bounded finitely additive

measures on(). Clearly since any measure inM() can be written as a difference of two non-negative
measures there is no loss ofgenerality in assuming that the measures are non-negative, and we will assume

so throughout this paper.
DEFINITIONS 2.2.

1- A measure IX M() is said to be o-smooth on if for L,, andL, O then IX(L,) 0.

2- A measure Ix /M() is said to be o-smooth on() if forA,, .(),A, 0 then A,,) 0.
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3- A measure Ix M(Z) is said to be z-smooth onZ if for L,ra A,L,, , O then Ix(L,) 0.

4- A measure Ix M(,) is said to be L-regular if for anyA .,q(,),

IX(A) sup IX(L).
LCA
L.,

IfL is a lattice of subsets ofX, then we will denote by:

Ms(Z) the set of Z-regular measures ofM(L)

Mo(Z) the set of o-smooth measures on L ofM(L)
M(Z) the set of o-smooth measures on A(Z) ofM(Z)
M,(f,) the set of regular measures ofM(Z;)
M,(Z) the set of z-smooth measures on Z ofMs(Z)
M(L)- the set of z-smooth measures on Z ofM(Z).

Clearly

Mr(z) CM;(n) CMs(Z).

DEFINITION 2.3. IrA .(Z) then IX, is the measure concentrated atx X.

{10ifx (AIxx(A)
ifxA

l(Z) is the subset ofM(Z) which consists of non-trivial zero-one measures which are finitely additive on

a().

IR(c)--the set of z-regular measures ofI(Z)

Io(Z)- the set of o-smooth measures on Z ofI()
l(Z)- the set of o-smooth measures on() of I(L)
l,(t;) the set of z-smooth measures on Z; of l(Z)
l,(Z) the set of L-regular measures ofI"()
1,(Z)- the set of Z;-regular measures of It(/;)

DEFINITION 2.4. If Ix M(Z) then we define the support of Ix to be:

S(Ix) f"I{L U.,/IX(L Ix(X)}.
Consequently if Ix l(z),

S(Ix) fq{L e.f.,/L 1}.
DEFINITION 2.5. If, is a Lattice of subsets ofX we say that L is replete if for any IX I()

then S(IX) O.

DEFINITION 2.6. LetZ be a lattice of subsets ofX. We say that Z is measure replete if S(IX) ,,
for all Ix M(Z), Ix 0.

Separation Terminology

Letx and ,2 be two Lattices of subsets ofX.

DEFINITION 2.7. We say that -a separates 1;2 if for Aa . and A2 2 andA fqA2 O then

there exists Bx Zx such thatA2 CB andBa f"lA O.

DEFINITION 2.8. separates/;2 iffor A2,B L2 and A2fqB2 O then there exists At,Bt Z1
such that A2 CA1,B2 CBI andAx f3B2 0.

DEFINITION 2.9. Let/;1 C -2. /;2 is Z-countably paracompact if given A,, Z2 with A, O,

there exists B, Z1 such thatA, C B’,, and B’, O.

DEFINITION 2.10. LetZ C Z2. We say that2 is c.t-countably bounded (Z2 is, cb) if for any
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sequence {B,, } of sets of" with B,, , O then there exists a sequence {A,, } of sets of Z:l such that B,, CA,,

andA,, , O. IfZ:l CL2 and IX EM(,:,)then the restriction of IX on .,(f_.t)will be denoted by v- Ix

REMARK 2.1. We now list a few known facts found in [1 which will enable us to characterize

some previously defined properties in a measure theoretic fashion.

1. , is disjunctive if and only if Ixx E IR(,), Vx .X.

2. " is regular if and only if for any IX, I(.,) such that IX on " we have S(IX) S().

3. " is T2 if and only if S() O or a singleton for any IX tE I(,).

4. ., is compact if and only if S(la) , for any Ix IR(,).

3. LATrlCE REGULAR MEASURF,S.
In this section, we shall consider lattice properties which are intimately related to measures on the

generated algebra. First we list a few properties that are easy to prove, but which are important and will

be used throughout the paper.

PROPOSITION 3.1. If Ix E MR(L), then Ix EMo(c) implies Ix M(L).

PROPOSITION 3.2. If IX EM(’), then IX (extended to o(.)) is 6(,)-regular on o(,).

LEMMA 3.3. If, is a complement generated lattice of subsets ofX, then , is c. p.

PROOF. Suppose L,, . Then since c is complement generated, L,, CI L’,,, where L’,,;

(may assume L,,i ,i, ). Let

A’,, N L’ij whereA’,, E.f_.,’

so that

L,, CA ’,, -L ’I fqL ’2... IqL ’u, f’lL’ CIL,,,,’ and clearly A ’,, , O.

THEOREM 3.4. If, is complement generated, then Ix E Mo(,’) implies IX E M.(L).

PROOF. If L .f.,, then L-fqL’i where LEL (may assume L $ ). Clearly,
i-1

L lqL’-flI(L’ CIL’)-O and (L’ f"lL’), O. Since Ix tEMR(,’), then IX(L’ CIL’I) 0 and hence
i-1

IX(L’i) IX(L). Therefore, Ix(L) inf IX(L’i). Thence Ix E MR(L).
L CL’,L,

Now, we show that IX Mo(/.,). Since , is complement generated we know from lemma 3.3 that, is countably paracompact. Let L,, O. Then, since L is c. p., there exist ,, tU/.7, such that L,, C ’,, and

’,, O. Then, IX(L,,) IX(’,,) 0 because Ix M("). Now, using Proposition 3.1 and the fact that

Ix E MR(L), we have that Ix M.’(’).

DEFINITION 3.5. Ix is strongly o-smooth on , if for L ’,L and

f"lL,, /.,, la(f"lL,,)-- inf Ix(L).

THEOREM 3.6. Let L be a complement generated and normal lattice of subsets of X. If t is

strongly o-smooth on L, then Ix C M,(Z;).

REMARK. If " is a 6-lattice, o(L) Cs(’) and Ix EM() then IX M,(L). This result follows

from Choquet’s theorem on capacities [7].
Next, we generalize a result of Gardner [8].
TtlEOREM 3.7. Let be a lattice of subsets ofX and suppose that

1) M(),
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2) is regular and

3) ifLa E/; andL, then, ix’(?L)--inf, ix(L,).

Then, Ix E M.(/;).

PROOF. Let L E Z. Then by regularity, L n L, where L CL, CL (may assume L, ). Let

x EL’- UL’o,L, ’. Then, x EL,,aa0 for some a0. Clearly, x CL,, and L n L,. Since L is

regular, there exist ,/_, EL such thatx Ef-,’o.,L, Cf_,’,:, and ’,A/S’,- O. Hence, L, CI,’, C,=L,.
Now taking intersections with respect to ct, we get,

Therefore Ix(L)-IX’(?L,)--Ix’(?’,)- Ix’(n,)- inf, Ix(L,)- inf(’,)-, inf(,)., By the argument

used in Theorem 3.4, we find that IX EM,(/;). But, since IX EMo() then ix EM,’(/;). Now, let L, , O.

Then IX(?L,)- anal(L,0--0. Hence, ix M(/;).

We make use of the following extension theorem a proof of which can be found in [9].
THEOREM 3.8. Let/;1 and .6 be two lattices of subsets of X such that/;1 C L2. Then any

IX E MR(/;1) can be extended to v E MR(L2) and the extension is unique if/;1 separates/;_. If we further

assume that L2 is o(/;1)-cb and/;1 is a 6-lattice then any ix E M,(/;I) can be extended to v E M(/;2).

COROLLARY 3.9. Let/;1 C/;2. If/;2 is/;x c.p. or/;a c.b., then any ix E M,(/;t) can be extended

to v EM(L2).
COROLLARY 3.10. IfX a topological e.b. space, then every IX EM(/;1) can be extended to

v e
LEMMA 3.11. If/;1 C f_,_,/;2 is c.p. and/;1 separates/;2 then/;2 is/-,1 c.p.

COROLLARY 3.12. lfX is a coutably paracompact and normal space, then every ix

extends to v EM(#’) and the extension is unique.

PROOF. Let/;1 -Z, and/;2- 7. Then/;2 is/;1-countably bounded,/;1 separates/;2 and/;1 is a

6-lattice. Now use the previous Theorem 3.8. This result is due to Marik [10].
Next, we have a restriction theorem, which although generally known, we prove for the reader’s

convenience.

THEOREM 3.13. Let/;1 and/;2 be two lattices of subsets X such that/;1 C/;2- Suppose/;1

semi-separates/;2 and v E Ms(/;2). Then IX v

PROOF. The proof of this Theorem is well known and will be omitted.

4. SPACES AND MEASURES ASSOCIATED WITIt LA’VIICE REGULAR MEASURE.
We will briefly review the fundamental properties of this Wallman space associated with a regular

lattice measure ix, and then associate with a regular lattice measure Ix, two measures t and on certain

algebras in the Wallman space (see [3]). We then investigate how properties of ix reflect to those of t and

!, and conversely, and then give a variety of applications of these results.

LetX be an abstract set and/; a disjunctive lattice of subsets ofX such that O andX are in/;. For
anyA in A(L), defined to be W(A {Ix EIR(L):IX(A 1 }. IfA,B CA(L) then

1) W(A UB)= W(A U W(B ).

2) WAn WA nwn).
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3) w(a ’) w(a )’.
4) W(A C W(B) if ana only ira CB.
5) W(A W(B if and only ira B.

6) W[A()] ., W()].
Let W() {W(L ),L z; }. Then W() is a compact lattice of IR(), and IR() with :W() as the

topology of closed sets is a compact T1 space (the Wallman space) associated with the pair X,. It is a

T2-space if and only if is normal.

For Ix .M(L) we define t on.fl(W()) by: W(A))- IX(A) where a .(). Then ff.M(W(,)),
and MR(W(,)) if and only if Ix MR(,).

Finally, since "tW(.(_,) and W() are compact lattices, and W(,) separates "tW(,), then has a unique
extension to ! CMR(’r.W(,)) (see Theorem 3.4).

We note that by compactness and t are in M’(W()) andM(xW()) respectively, where they are

certainly’r-smooth and of course o-smooth. can be extended to o(W(,)) where it is 6W(,)-regular; while

can be extended to o(’r(W(,))), the Borel sets of IR(,), and is "rW()-regular on it.

One is now concerned with how further properties of IX reflect over to and respectively. The

following are known to be true (see [1]) and we list them for the reader’s convenience.

TItEOREM 4.1. Let be a separating and disjunctive lattice. Let Ix MR(Z;), then the following

statements are equivalent.. Mg(z).

2. If {L,} ,,L, , and fql W(L,) C IR(Z;) X then W(L,) 0.

3. if{L,} E,;LI, and CIW(L,)Cl,()-l,()thent[W(L,)]-0.
,t. ’(x)- (t(z)).

THEOREM 4.2. If is separating, disjunctive, i5, normal and countably paracompact; and IX MR()
then the following statements are equivalent:

1. M;(Z).

2. (K) 0 for all K CI()-X and K

Note thatZ E ;(xW(L)) =Z (E o[W(L)].
THEOREM 4.3. Let be a separating and disjunctive lattice. If IX MR() then the following

statements are equivalent:

2. ff {L,} L , and W(L Cl(L X then W(L) 0.

3. ’(X) (l,(z)).

THEOM 4.4. ff is a separating and disjunctive lattice of subse ofX then, M(L) if and

only vanishes on every closed subset of Is(L), contained in Es(L) X.

THEOM 4.5. t be a separating and disjunctive lattice of subse ofX and

the o statements aw equivalent:. (z).

2.
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THEOREM 4.6. LetL be a separating, disjunctive and normal lattice ofsubsets ofX. Let Ix 6 Mc(L)
then the two statements are equivalent:

1.. x is t*-measureabe and t*(X)-
We now establish some eurther properties pertaining to the inuce measures t and t. First we snow
TEOM4.7. t e a separating an isjunctive lattice, an M() then is W() regular

on (w())’.
PROOF. Weow that W(L) and xW(L) are compact lattices and that W(L) separates xW(L). Since

M(L)then M[W(L)]. Extend to xW(L) and the extension is

M[xW(L)] M[xW(L)] [xW(L)] M[xW(L)].

Let 0 [xW(L)]’ then since M[xW(L)] there exists F xW(L),F C 0 and

o)-s)l <; >o.
Since F xW(),F W(L=), L= . so since F C 0 then F O’ i.e. W(L=) O’ by

A

compactness there must exist A such at W() 0’ us C W() C 0" 0 so

10)- w(L))[ <

i.e. is W(L) regular on (W(L))’.

TEOM 4.8. t M() then " on W(L).

PROOF. Since M(L) and W(L) is compact then M[W(L)] [W(L)] and since W(L)

separatesW(L) andW(L) is compact then Mg[W(L)] [W(L)]rthermore extends toW(L)
uniquely. tF W(L) then

’(F) i.f E ,).F c u, and, e[W(z)]
i-1 -I

and since [W(L)] then

(A)- infW(L’)A C W(L’),L L.

usF C W(L ’i) but since W(L is compact enF C W(L ’) W(L ’) where L L and
-1 -1

’() inW(’)]; F c w(’) and ez.
Now F C W(L’)F W(L)- then since W(L) separate W(L)L such that F C W() and

W([ W(L . erefore W(L’) C W([ and hence

i.e. that " is relar on W(L). On the other hand since W(L) is 6 then- W(L and [ W(L=)] iW(L)-infW(L=))

where F C W(L, L= L. erefore " on zW(L).

OM4.. tL and L be o lattices of subsem ofX such that L C L= and L separates

Lz Ifv M(L) then v " on L’= and v on L’= where v

PROOF. tv M(L=) then sinceL separatesL M(L). SinceL C L= then o(L) C

Let E CX then

v’(E) inf v(B inf v(A ’(E)
E cB,e) EcA



790 EL-BACHIR YALLAOUI

therefore, v" Ix’. Now on/;2, v" - Ix’. Suppose ::l L2 /;2 such that v(L2) < Ix’(L=) then since

v CM(L2) v(L) infv(’=), L C’2 and2
then L:, CI/, and by separation lLl,, L1 such that L (i Lt, (i ’t (’: and therefore

v(L=) inf Ix(Lt,) where L (Lm

infv(’) where L C’2
< ’(L,).

Ve>0:ILILI such that L_CL and IX(LI)-e<v(L=)<Ix(LI) but since L=CL then

Ix’(L2) IX(L1) < v(L=) + e which is a contradiction to our assumption. Therefore v
on L2.

This theorem is a generalization of the previous one in which we used the compactness of W(/;) to

have a regular restriction of the measure. Also this theorem enables us to improve corollary 3.12 namely:
IfX is coutably paracompact and normal then each measure Ix tE Ms(2;) extends to a measure v Ms(Y)
which is 2;-regular on 0.

THEOREM 4.10. Suppose/; is a separating and disjunctive lattice. Let x

if and only if {x } t Wo(L’.).
PROOF.

1. SupposeCIL’. {x} whereL. ,. Considerf) W,,(L.)’ inI.(/;). LetIx
_

for all n = IX(L’,,) 1 for all n and since x tq L’,, and one can extend Ix to o(/;) then Ix({x})
i-1

therefore irA .,q(/;)andx tEA = A)-1 therefore

Ix Ix on/;, Ixx (E Is( i.e. Ix Ix and hence tq Wo(L.)’ {x }.

If {Ix} 0,, in I.(/;) where 0,, are open then Ix Wo(L’.) C 0,, where L,, tE.. Therefore

thus

{Ix} tq Wo(L’ )- (L’,) and hence nL’. ,,

x L’, =*, IX- IX, i.e. L’, {x}.

We now give some applications of the previous results.

THEOREM 4.11. Let/; be a lattice of subsets of X,, separating and disjunctive. Suppose for

every IX .ls(/;)-X there exists Z (xW(z,)) such that IxZ CIs(/;)-X. Then/; is replete.

PROOF. Suppose/; is not replete i.e. X I,(/;). Let Ix I.(/;) X then from the above condition

there existsZ Z,(xW(,))such that IXZ CI,(/;)-XbutZ- tq W(L)’ where L, /;. Therefore

because
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Therefore n L ’,, ,, because Ix w,,(nL’,,) which is a contradiction for

Wo f ’. C I;(L) -X i.e. W,, n_ nx L’..

Therefore .6 must be replete.

THEOREM 4.12. Let L be a separating and disjunctive lattice of subsets of X. If.6 is normal,

coutably paracompact and replete then for any Ix I,(.6)-X; :IZ ,Z;(’rW(.6)) such that IxZ Cln()-X.

PROOF. Since Z is replete then I,(.6) (.6) X. Let Ix In(.6) -X In(.6) I(.6) then

=l L. LL, , such that

n W(.)CI.(L)-X.

Now since .6 is normal and countably paracompact then =IA,, .6 such that L. CA ’. andA ’. , so

n W(L,) c n W(A’,,) Z i.e. Z Z,[’rW(.6)] and, Ix n W(L,) C Z C I(.6) -X.

COROLLARY 4.13. Suppose .6 is separating, disjunctive, normal and countably paracompact.

Then .6 is replete if and only if for all Ix ff.I,(L)-X there existsZ Z,[’rW(.6)] such that Ix Z C In(.6)-X.
The proof is a simple combination of the two previous theorems.

THEOREM 4.14. Let .6 be a separating and disjunctive lattice of subsets ofX..6 is replete if and

only if for each Ix I,(.6) X ::1B C_ o[W(.6)] such that Ix B C I,(.6) X.
PROOF.

1. fly _I.(.6)-X C In(.6)-X then

:! B o[W(.6)] such that v B C I,(.6) X.

Then"(B 0 since v I,(.6) but "’({v}) 1 and v B which is a contradiction, and thus I,(.6) X.

2. Conversely if .6 is replete, let Ix IR(.6) X I,(.6) I.(.6) then IX I.(.6) X. Therefore

:tL. EL,L,, suchthatIx(E n W(L,)c(c.)-X,- n W(L,)e(L)-X.
n.1 n-1

This theorem is somewhat more general than the previous corollary because we ask less from the

lattice .6, however we get a set B o[W(L)] rather than a zero set z Z(xW(L)).
EPL4.15.

We are going to apply corollary (4.13) to special cases of lattices.

1. tX be a space and L 3 then X is 3-replete if and only if Vp X ]Z a zero set of

such thatp Z C -X.

2. t X be a To countably paracompact space and L-Y then X is a-real compact if and only if

p-X]Z a zero set of such thatpZC-X. ere is the Wallman

compactification ofX.

3. tX be a Tt space and L ( is normal and countably paracompact and ln() I()) then X is

Borel-replete if and only if VpI(B)-X=I(B)-XZ a zero set of I(B) such that

eZ CI(B)-X.
Let (CI) be the following condition: W(L) CI(L)-X ere exists a countable sequence {L} such

that W(L) W(L) I(L)-X.
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holds.

THEOREM 4.16. Suppose that r is separating and disjunctive then , is Lindelff if and only if (CI)

PROOF.

Suppose L is gindel6f and let rq W(L,) C I,(L)-X where L. EL then

x c o w(t,,)’ =,,x c u W(L’,Jnx- u’,

but since is Lindel6f then

and therefore

Xc UL’, C UL ,C U(L ,)

f’l W(L,) C rl W(L’,) C IR(,)-X, i.e. C1 holds.

Suppose (C1) holds and letX- f’)L’,L,X then

using (C1) we get

$O

and since

then

n W(L.) ct,(z)-X

n W(L) c n W(L,,,) cI.(z)-x

X C U W(L’)=,, x C U W(L o)nX U L .
i-1 i..1 i-I

X UL’,a

i.e. , is Lindel6f.

THEOREM 4.17. Suppose , is separating, disjunctive, normal and countably paracompact then ,
is Lindel6f if and only if for any compact K CI,(,,)-X::IZ a zero set, Z .Z,(r,W(,)) such that
K CZ CIR(,)-X.

PROOF. Since/; is normal then I() is T2 so ifK is compact in I(); K is closed and therefore

K- n W(L,L.
Now from the previous theorem we know that . is Lindel6f if and only if (C1) holds so if

K- n W(L)Ct(,)-X

there exists a countable set ofL, such that

K n W(L) c n W(L) CI(,) X
i-1

but we know from previous work that if is normal and countably paracompact then there exists a zero

set Z such that

r’t V(L) CZ cI(,) X
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so

c c W(L,)cZ c 4(z,)-X

so/; is Lindel6f if and only if for each compact K Mn(/;) there exists a zero set Z Z;((W(/;)) such that

K CZ CIn(,)-X.
EXAMPLES 4.18.

1. LetX be a T space and/; Z; then/; is Lindel6f if and only if for each compactK C I,(/;) X there

exists a zero set Z such that

K cZ c-X,Z ez(CWCz)).

2. Let X be a 0-dim T space and/; C then/; is Lindel6f if and only if for each K C 0X-X there

exists a zero setZ such thatZ Z;[’W(/;)] andK CZ CX-X.
3. X is a T space and/; B then B is Lindel6f if and only if for each compactK C I($) X there exists

Z ;[:W($)] such thatK CZ CI($)-X.
Finally we give some further applications to measure-replete lattices.

TIIEOREM 4.19. Suppose/; is separating and disjunctive. Let IX MR(/;) and suppose for each

F CIn(/;)-X,F closed in Is(/;); I(F) 0 then IX M(/;).

PROOF. We saw earlier work that " ! on "W(/;). To show that Ix EM,(/;) all we have to do is

show that (t vanishes on each closed set F C IR(/;)-X. Since W(/;) is compact then F f"l W(La) where

L, /;; may assume L, ,,F C xW(/;) so I’(F)= II(F) but ’(F) 0 by hypothesis. Therefore (F)= 0

and hence Ix M,n(/;).
TtlEOREM 4.20. Suppose/; is separating and disjunctive and for each F CIs( X, F closed in

In( there exists a setB tE o[W(/;)] such thatF CB CIn(/;)-X then M,(/;)- M,n(/;).

PROOF. Let IX M,(/;). We have to show that IX EMn(/;) and that can be achieved if we show

that ’(F) 0. Recall that if Ix Mn(/;)then Mn[W(/;)] Mn[W(/;)] and can be extended to o[W(/;)]
where the extension is o- W(g) regular. From the condition we have that if F CIn(X and F closed

in Is(i;); there exists a set B o[W(/;)] such that F CB CIn(/;)-X therefore, ’(F)-: ’(B), but since

IX C M,’(/;) then ft’(In(/;)). Hence O’(B 0 and thus ft’(F) 0 i.e. M,(/;) Mn(/;).

THEOREM 4.21. Suppose/; is separating and disjunctive, then M,(/;),Mn(/;) if and only if

I],’(F) 0,IX .M,(/;) for allF CIn(/;)-X,F closed in/n(/;).
PROOF.

1. Suppose M,(/;) Mn(/;) then

ll(F)- 0 for allF CIn(/;)-X,F closed in/n(/;

but F f"l W(L,O therefore (F) ’(F) 0.

2. Suppose IX=_M(/;). LetF CIn(/;)-X,F closed inln(/;)then t’(F)- (F)--0 so t vanishes on

all closed sets of In(c,) X i.e. M,n(/;).
TItEOREM 4.22. Suppose/; is a separating and disjunctive lattice. Suppose that for each closed

set in ln(/;),F CIn(/;)-X there exists a Baire setB such thatF CB CIn(/;)-X then/; is measure replete.

PROOF. Let Ix M,(/;) and F C I(/;) X,F closed in In(i;) then :! B

_
o[.W(/;)] such that

F CB C In(/;) X then

I](F) -: (B) i[t.(ln(/; -X) 0
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therefore F) 0 so l vanishes on every closed set of Is(r,) X i.e. M(,).

EXAMPLES 4.23.

1. X is T ,; L--2; then

M,(Z;) -Ms(2;)if and only if *(f) l](F) 0
for every F C [-X and F closed in and I,t {E M,(2;).

2. IfX is T1; , s then Ms(S) M(S) and

M,’(S) M,(S) if and only if *(f) f) 0

for every F CI(B) -XF closed in I(B).

3. IfX is a 0-dim T space L C then Ms(C) M() and

M(C) M(C) if and only if t(F) [*(F) 0

for F C [0X-XF closed in [oX.

4. IfX is a T1 space and L -9 then

M,(.T) M(br) if and only if ’(F) 0

for all F C wX-X;F closed in wX.

5. IfX is T and , --2; thenZ is measure-compact if for each F C []X-X andF is closed in [d(, there

exists a Baire set B of such that F CB C X-X.

S. THE SPACE I():

DEFINITION 5.1. Let be a disjunctive lattice of subsets ofX.

1) Wo(L)-{ll()lld,L 1};L

2) Wo(.f.,) {Wo(L ),L .f.,}
3) Wo(A)-{eI(,)[A)- 1}A

The following properties hold:

PROPOSITION 5.2. Let.f_, be a disjunctive lattice then forA,B .(/_,)

1) Wo(A UB Wo(A O Wo(B

2) Wo(A B Wo(A t’) Wo(B
3) Wo(A ’) Wo(A )’
4) Wo(A) C. Wo(B) if and only ifA CB
) a[wo(z)] w,,[(z)]
The proof is the same as for W(L) by simply using the properties of W(L) and the fact that

Wo(A W(A)ls() and Wo(B W(B )CIs(.f.,).
REMARK, It is not difficult to show that o[Wo(,)] W[o(,)]. Also, for each EM(,) we define

’ on .[Wo()] as follows:

’[Wo(A )] A whereA {E()

’ is dened and the map l,t’ from M() to M(Wo(L)) is onto. In addition, it can readily be checked

that,

TItEOREM 5.3. Let be disjunctive then

1) M() if and only if

2) t

_
Ms(L) if and only if ’ EMs[Wo()]
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3) Ix H M"(,) if and only if Ix’ HMdWo(,)]

4) HMo() if and only if

5) t HM(L) if and only if Ix’ HM,[Wo()]
We next consider properties of the lattice Wo(,).

PROPOSITION 5.4. Let be a disjunctive lattice of subsets ofX then:

1) W,,(L) is disjunctive.

2) wo(c) is r.
3) Wo(,) is replete.

PROOF. The proof of this Theorem is known. Let (C2) be the following condition: For each

t H l(Z;) there exists at most one v

THEOREM 5.5. LetL be a separating and disjunctive lattice of subsets ofX. Then (I(L),r.Wo(L))

is T2 if and only if (C2) holds.

PROOF.

) Suppose(lg(,),’rW(,))isT2;thenWo(L)isT2;ifix’ Hl[Wo(L)]thenS(’)-or {v},wherev .l(L).

Since S(IX’) {v H/(,) 1 -: " on L} or a singleton then (C2) holds.

2) Suppose (C2) holds and letlx’ Hl[Wo(L)]ifS(lx’)Oandvt,vzHS(lx’);v v;thenlx vtand ix v:
on Z; which is a contradiction to (C2) therefore S(IX’) or {v}. i.e. xWo(L) is Tz Let la H MR(L),
then ’ HMR(Wo(,)) by theorem 5.1. We wish to investigate conditions under which Ix’ has further
smoothness properties. Recalling the notations of section 4 we have,

THEOREM 5.6. Let Z; be a disjunctive lattice of subsets of X. If la HM,(L) then the following

statements are equivalent:. ’ M[wo()]

2. If {L,} is a net in L such that L, , I’q W(L,)CI(,)-I(L)then (t[i. W(L,)] 0

PROOF.

1 =,, 2. Suppose Ix’ HM[Wo(6)] and let {L} be a net in L such thatL then W(L,) and Wo(L,) then

t[ W(L) --inf (x(W(L)) lim t(W(L)) lira t(L)--lira t’[Wo(L,)]

but since Wo(L,) , and .’ HM[Wo(L)] then

2 . 1. Let Wo(L.) 1, .L. H then

Therefore C W(L.) C I(,)-I() and using 2 we get.
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2 =:, 3. Assume 2 is true then

so

Now

li(Is()) Ii’(I,(.)) if and only if It.[ls(,) I(,)] O.

[Is(,)-I(,) {K),K xW(,) andr CIs I(,)}K xW(,)then

where we may assume W(L,O ,1, then

and therefore

3 = 2. Assume 3 is true and let

then

ff()-()) 0.

LL,L J, and n W(L) cr,(z)- t;(z)

COROLLARY 5.7. If , is a separating, disjunctive and replete lattice of subsets of X then

Ix’ . Ms[W,,(.,)] implies Ix M(Z;).

PROOF. Since L is replete thenX I.(,) then from the previous theorem we have

(z()) ’(t;()) ’(x)

i.e. Ix M(L) from theorem (4.5).

COROLLARY .$. Let L be separating and disjunctive. Suppose Ix’ _M(W,,(L)) =,. Ix _.M(L)

then L is replete.

PROOF. Let Ix I(L) then since Wo(L) is replete Ix’ tE[Wo(L)] then by hypothesis Ix I(L)

therefore l(L) (,) or L is replete.
If we combine the two corollaries we get the following:

TttEOREM 5.9. Let be separating and disjunctive. Then is replete if and only if

t’ MCWoCz:)) M(z).
REMARK. Let IX =-Ms(L). We say that there is a one to one correspondence between Ms(r,) and

Ms[W(,)], and we defined on a[W(L)] such that for all A a(,),W(A)]-Ix(A). Since

W,,(,) W(L)OI,(,)we can restrict lJ. on a[W,,(L)] and we call the restriciton Ix’0 defined as

t’o[Wo(A)] t’0[W(A tg(z:)] fgW(A )].
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It’0 is well defined and the restriction is a 1-1 correspondence since [t*(/,(r‘))- i[t(IR(r‘)) i.e. by thickness.

Hence It’0 in MR[W,,(r‘)] and Ix’0 IX’.
PROPOSITION 5.10. Let , be a separating, disjunctive and normal lattice. Let %. M[xW(r‘)]

and .’[I,()] I()] then .= (t, it Mn(r‘ and IX’ M(W,,()).
PROOF. Suppose. M(v,W()) M(W()) M(’W()) and .’(1()) I()).

Restrict :k to t(Mg(W(r‘)). The restriction is unique because W(r‘) separates xW(L) and since

t’(l,(L)) (I(L)) then .- t. .- t projects onto l,(r‘) and is denoted by v. It’ M(Wo()) and has a

unique extension to M](xWo(r‘)) and of course v is that extension.

TItEOIM 5.11. Suppose is a separating, disjunctive and normal lattice of subsets ofX, then

the following statements are equivalent:
1. It’ M[W,,(r‘)]

I,(,,) is t’-measurable and *(l,(r‘)) I()).

PROOF.

1 = 2. Suppose 1 holds then Ix’ M[Wo(r‘)] and then using theorem 5.4 we get ’(l,(r‘)) (/R()). We

saw in earlier work that I projects on l,(r‘) where the projection is v tEM[:Wo(r‘)] and is the unique
extension of It’ EM,[Wo(r‘)]. Now since Ix’ tE M[Wo(r‘)] there exists a compact set K tE Wo(r‘) such that

It’.(l,(r‘)- K) < e for any e > 0 so

It’.(l,’(r‘)- K) + Ix"(K)- It’(/(r‘))- l](IR(r‘))

Ix"(K) infit’(A),K CA anda

infv(A ), K CA andA O[Wo(r‘)]

v(K).

Therefore Ix"(K) z v(K). K "tWo(r,), since lT(r‘) is T2 because L is normal; then K fq Wo(L),L,, . ,
and may assume L. so

Therefore v(K) Ix"(K) and

v(K) infv[Wo(La) . inf v(A) Ix"(K).
a

v[lCr‘) K] Ix’.[l(r‘) K] ’[I.() K] < e

where K is compact in l,’(r‘) and l(r‘) because it is a closed subset of a T2 space. So l(r‘)-K is open,

l(r‘)-K C IR(r‘) I,’(r‘) and [t(ln(r‘)-K) < e. Therefore ’(ln(r‘) l,’(r‘)) 0. So l,’(r‘) is t’-measurable
and

2 = I. Suppose 2 holds. Since Ix’ M[Wo(r‘)] then
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’(I(/;)) sup{l(K);K E xW,,(/;) and K C I(/;)}

then there exists a compact set K ’tWo(/;), K C: I,’(/;) and

(K) > !,’(I,’(/;)) E VtE > 0. Let K’ I,’(/;) K then

v(K’) ’.(K’) =,, tg.(K) v(K) but

vCK)- v(I,(/;)nK)- 6(K) > rTt’(l(/;)) >

so

lg.CK’) Ig.ClC/;)-K) <

K- W,(/;) such that

THEOREM 5.12. Let/; be a separating, disjunctive, normal and replete lattice then

’ M,[Wo(/;)] if and only if M(/;).

PROOF.

Let ’ ft. M[Wo(/;)] then since/; is replete we have thatX I,’(/;) and X is ’-measurable and

’Cl;(/;)) OCIRC/;)) O(x)

then by theorem 4.6 we get that I.t E M(/;).

Conversely suppose I.t M(/;) then from theorem 4.6 we get that

andX is 17t’-measureable butX C I,’(/;) C I,(/;) therefore ’(I,’(/;)) (lt(/;)), then since/; is replete

X I,(/;) so ’(X) !.’(I,’(/;)) (I(/;)) then from theorem 5.11 V.’ E M,[Wo(/;)].

10.
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