RESEARCH NOTES

NORMS IN FINITE GALOIS EXTENSIONS OF THE RATIONALS

HANS OPOLKA

Mathematisches Institut Universität Göttingen Bunsenstrasse 3–5 D–3400 Göttingen

(Received August 22, 1989 and in revised form December 12, 1989)

ABSTRACT. We show that under certain conditions a rational number is a norm in a given finite Galois extension of the rationals if and only if this number is a local norm at a certain finite number of places in a certain finite abelian extension of the rationals.

KEY WORDS AND PHRASES. Number fields, norms. 1980 AMS SUBJECT CLASSIFICATION CODE. Primary 12A10, 12A65.

1. INTRODUCTION.

Let k be a number field. L. Stern [1] has observed that two finite Galois extensions L, M of k coincide if and only if the corresponding norm subgroups $N_{L/k}L^{\pm}$, $N_{M/k}M^{\pm}$ of k^{\pm} coincide. So it seems worthwhile to determine the norm subgroups of k^{\pm} which is certainly a difficult task. We consider the case k = Q.

2. LOCAL CONTROL OF GLOBAL NORMS.

Let K/Q be a finite Galois extension of degree d and class number h. For a given finite set of places S of Q and a given positive integer m we say that the triple (Q,m,S) is in the special case if $m = 2^t \cdot n$, $t \ge 1$, n odd, if 2 \leq S and if the cyclotomic extension $\mathbb{Q}_2(\mathbb{I}_{2^t})/\mathbb{Q}_2$ is not cyclic; \mathbb{I}_{2^t} denotes a primitive root of unity of order 2^t .

THEOREM. Let $\not \in \mathbb{Q}^*$ and let S denote the finite set of places of \mathbb{Q} for which \checkmark is not a local unit and which are ramified in K. Assume that the triple $(\mathbb{Q}, d \cdot h, S)$ is not in the special case. Then there is a finite abelian extension \mathbb{E}_S/\mathbb{Q} such that \checkmark is a norm in K/Q if and only if \checkmark is a norm locally in \mathbb{E}_S/\mathbb{Q} at all places in S. The degree $(\mathbb{E}_S:\mathbb{Q})$ is bounded, in terms of d and h.

PROOF. Let H_K denote the Hilbert class field of K and let C_K/Q denote the maximal central extension of K/Q contained in H_K/Q . It follows from [2], p. 216, Cor. III. 2.13, that \measuredangle is a norm in K/Q if and only if \measuredangle is a local norm in C_K/Q at all places in S. It is well known that a norm subgroup of a

local extension coincides with the norm subgroup of its maximal abelian subextension. Therefore we see, [3], p. 93, (6.9), that there is a finite abelian extension E_S/Q such that the local extensions of E_S/Q at all places in 3 coincide with the maximal abelian subextensions of the corresponding local extensions of C_K/Q and such that E_S/Q has the asserted properties. 3. A PROBLEM

In connection with the theorem above the following problem arises. For a given finite Galois extension K/4 of degree d and class number h and a given finite set of places S of Q such that the triple $(4, d \cdot h, S)$ is not in the special case, determine the minimal conductor of an abelian extension E/4 such that the local extensions of E/4 at all places in S coincide with the maximal abelian subextensions of the local central Hilbert class field extensions of K/4 at all places in S.

ACKNOWLEDGEMENT. I would like to thank the referee for useful remarks.

REFERENCES

- 1. STERN, L. On the norm groups of algebraic number fields, <u>J. of Number</u> <u>Theory</u> <u>32</u> (1989), 203-219
- 2. JAULENT, J.F. L'arithmétique des l-extensions, <u>Thèse Université Besančon</u> (1986)
- NEUKIRCH, J. Über das Einbettungsproblem der algebraischen Zohlentheorie, <u>Inv. Math.</u> 21 (1973), 59-116