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ABSTRACT. A sequentially incomplete regular inductive limit of a sequence of Banach spaces is

constructed.
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I. INTRODUCTION.

In [I] Jorge Mujica asks: Is every regular inductive limit of Banach spaces complete? A partial

answer is in [2] with an example of a regular inductive limit which is quasi-incomplete. It is

conjectured in [2] that the regular inductive lhnit might even be sequentially incomplete. Here

we prove the conjecture. On the other hand, regular inductive limits of Banach spaces always

have some completeness property, e.g. they are fast complete, see [3].

2. MAIN RESULT.

Let N {I;2,...} and R be the space of real numbers. For each z {zj} E RNxN and n E N

we put z I[,.= max{, max{Izj[;] < n},sup{Izj[; ] >_ n}},

For brevity, we also put

LEMMA I. The map z II = II.: . - . norm on E, and each functional ]’j :z - zj

E R is continuous.
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LEMMA 2. Each E. is Banach.

PROOF. Let {xC);k } be Cauchy. Then for each i,j E N, the sequence {J’d,iCz(k));k
N} Cauchy in R and thus converges to some x,i R. Put z {z,i}. For any i,k,n N, we

have lim z(k) z(m) II,.=11 () I1,., which implies z E d lira z(k) z I1= 0.

indlimLEMMA 3. The inductive limit E n oo, is regular.

PROOF. Let B C E be not bounded in any E,. Without a loss of generality we may assume

that for any n 5 N there exists x(n) B such that x{n) I1,> n. This implies the existence of
sequences {i(n)}, {j(n)} C N such that: either j(n) >_ n and x(n)q},i{,} I> n or j(n) < n and

(),l. !> i() .,.

For each k N, choose r > 0 so that r; max{i(n); n

_
k} and denote by V the convex

hull of U{E(r);k N). Take k,n N,x {x,.} E(r), and distinguish three cases:

(a) jCn) > k, which implies zq,la.{,} i_<ii z II,< ,, < < ; z(n),.l,. l,

(b) i(n) < k & k >_ n, which implies

-" (-),(,)..,,)

(c) j(n) < k & k < n, which implies xi{,}.j{,} I_ i(n). I1_< i(n)r

_
i(n) <

(,’,,),.,,,, I.

Fo ,., I< g (),c-a. I. Since x E(r),k 5 N, was arbitrary, the
element -xCn) cannot be expressed as a convex combination of elements from U{E(r);k e
N}, i.e. x(n) V. Hence the 0-neighborhood V in E does not absorb B and B is not bounded
in E.

LEMMA 4. For each i,j,n N, put x(n),d j- if <_ n,x(n),d 0 if i > n, and x(n)
{x(n)id}. Then:

Ca) For eh. e N, zCn) e El(1).
() ((,)} ci.
(c) {zC)} does not converse m E.

PROOF.

Ca) is evident.

Cb) Let V be a neighborhood in E. For eh N, choose r. > 0 so that E.(r.) C V.
Fther, choose p, q N o that W > 2 d qr > 2. For m, n > q, define y, z E by:

yi.. xCrn)id xCn)id for j _> p, Yid 0 otherwise,

z. x(rn),d x(n),d for j < p, z, 0 otherwise.
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Since

O for

I=(),, =(),, I<_ - for i > q,j > p

1 for i>q,j<p

We have v I1 sup{I v,j I;i e ,i >

(c) Assume z(n) z in E. Since each functional fj, defined in Lemma 1, is continuous

o= = ., it Io =o=tin,o, on . Z= we ,. f,.() limf,.(())
lim zCn),# -I. Hence z Ill,n= max(7, ) and lim z I[,.= 0 i.e. z E for any

n.N.
By combining Lemma to 1-4, we get:

THEOREM. Regular inductive limit of Banach spaces may be sequentially incomplete.
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