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ABSTRACT. This paper provides a survey of iteration procedures that have been used to

obtain fixed points for maps satisfying a variety of contractive conditions. The author does

not claim to provide complete coverage of the literature, and admits to certain biases in the

theorems that are cited herein. In spite of these shortcomings, however, this paper should be

a useful reference for those persons vishing to become better acquainted with the area.
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1. ITERATION PROCEDURES.
The literature abounds with papers which establish fixed points for maps satisfying a

variety of contractive conditions. In most cases the contractive definition is strong enough, not

only to guarantee the existence of a unique fixed point, but also to obtain that fixed point by

repeated iteration of the function. However, for certain kinds of maps, such as nonexpansive

maps, repeated function iteration need not converge to a fixed point. A nonexpansive map

satisfies the condition IITx Tyll <_ ]Ix Yll for each pair of points x, y in the space. A simple

example is the following. Define T(x) 1- x for 0 _< x _< 1. Then T is a nonexpansive selfmap
of [0,1] with a unique fixed point at x 1/2, but, if one chooses as a starting point the value

z a,a 1/2, then repeated iteration of T yields the sequence {1 -a,a, 1 -a,a,...).
In 1953 W.R. Mann [32] defined the following iteration procedure. Let A be a lower

triangular matrix with nonnegative entries and row sums 1. Define xn+l T(vr,), where

Vn E ankXk"
k=O

The most interesting cases of the Mann iterative process are obtained by choosing matrices

A such that a,+l,k (1-a,+,,+)a,t,,k 0,1,...,n;n 0,1,2,..., and either a,, 1 for

all n or a,, < 1 for all n > 0. Thus, if one chooses any sequence {c,} satisfying (i) co 1, (ii)
0 _< c,, < 1 for n > 0, and (iii) c, c, then the entries of A become

atn C/t

ank=ck H (1-cjl, k<n. (1.1)
j=k+l

and A is a regular matrix. (A regular matrix is a bounded linear operator on go such that A
is limit preserving for convergent sequences.)
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The above representation for A allows one to write the iteration scheme in the following
form: x,+, (1 c,.,)x,., + c,.,T(x, ).

One example of such matrices is the Cesaro matrix, obtained by choosing c,, 1/(n + 1).
Another is c. 1 for all n >_ O, which corresponds to ordinary function iteration, commonly
called Picard iteration.

Pichard iteration of the function $1/2 (I + T)/2, is equivalent to the Mann iteration

scheme with

ank -This matrix is the Euler matrix of order 1, and the transformation SI/ has been investigated
by t’]delstein [13] and Krasnoselskii [30]. Krasnoselskii showed that, if X is a uniformly convex

Banach space, and T is a nonexpansive selfmap of X, then 5’/ converges to a fixed point

of T. Edelstein showed that the condition of uniform convexity could be weakened to that of

strict convexity.
Pichard iteration of the function Sx AI + (1 A)T, 0 < < 1, for any function T,

homogeneous of degree 1, is equivalent to the Mann iteration scheme with

This matrix is the Euler matrix of order (1 A)/A. The iteration of 5’x has been investigated
by Browder and Petryshrn [7], Opial [36], and Schaefer [50].

Mann showed that, if T is any continuous selfmap of a closed interval [a, b] with at most

one fixed point, then his iteration scheme, with c,, 1/(n + 1), converges to the fixed point of

T. Franks and Marzec [15] extended this result to continuous functions possessing more than

one fixed point in the interval.

A matrix A is called a weighted mean matrix if A is a lower triangular matrix with nonzero

entries an p/Pn, where {p } is a nonnegative sequence with p0 positive and

Pn Zp cx,
k--0

The author [42] extended the above-mentioned result of Franks and Marzec to any con-

tinuous selfmap of an interval [a, b], and A any weighted mean matrix satisfying the condition

lim ]an, an-l,t O.
k--0

In [42] the author also showed that the matrix defined by (1.1) is equivalent to a regular
weighted mean matrix with weights

ckp0
k > 0.

H( )’

Let E be a Banach space, C a closed convex subset of E, T a continuous selfmap of C.
Mann [32] showed that, if either of the sequences {xn} or {vn } converges, then so does the

other, and to the same limit, which is a fixed point of T. Dotson [12], extended this result to

locally convex Hausdorff linear topological spaces E. Consequently, to use the Mann iterative

process on nonexpansive maps, all one needs is to establish the convergence of either {xn } or
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For uniformly convex Banach spaces, the following was obtained independently by Browder

[6], Kirk [281, and Gohde [6].

Let C be a closed, bounded, and convex subset of a uniformly convex Banach space, T a

nonexpansive selfmap of C. Then T has a fixed point.

Unfortunately the proofs of above theorem are not constructive. A number of papers have

been written to obtain some kind of sequential convergence for nonexpansive maps. Most such

theorems are valid only under some additional hypothesis, such as compactness, and converge

only weakly. Some examples of theorems of this type appear in [8]. Halpern [18] obtained

two algorithms for obtaining fixed points for nonexpansive maps on Hilbert spaces. In his

dissertation, Humphreys [23] constructed an algorithm which can be applied to obtain fixed

points for nonexpansive maps on uniformly convex Banach spaces.

A nonexpansive mapping is said to be asymptotically regular if, for each point x in the

space, lim(T"+lx T"z) 0. In 1966 Browder and Petryshyn [7] established the following

result.

THEOREM I. ([7, Theorem 6]). Let X be a Banach space, T a nonexpansive asymptot-

ically regular selfmap of X. Suppose that T has a fixed point, and that I- T maps bounded

closed subsets of X into closed subsets of X. Then, for each z0 E X, {Tnx0 converges to a

fixed point of T in X.
In 1972 Groetsch [17] established the following theorem, which removes the hypothesis

that T be asymptotically regular.
THEOREM 2. ([17, Corollary 3]). Suppose T is a nonexpansive selfmap of a closed convex

subset E of X which has at least one fixed point. If I- T maps bounded closed subsets of E
into closed subsets of E, then the Mann iterative procedure, with {c,} satisfying conditions

(i), (ii), and (iv) c,,(1 c,,) oo, converges strongly to a fixed point of T.
Ishikawa [25] established the following theorem.

THEOREM 3. Let D be a closed subset of a Banach space X and let T be a nonexpansive

map from D into a compact subset of X. Then T has a fixed point in D and the Mann iterative

process with {c,} satisfying conditions (i)- (iii), and 0 _< c, < b < 1 for all n, converges to a

fixed point of T.
For spaces of dimension higher than one, continuity is not adequate to guarantee con-

vergence to a fixed point, either by repeated function iteration, or by some other iteration

procedure. Therefore it is necessary to impose some kind of growth condition on the map. If

the contractive condition is strong enough, then the map will have a unique fixed point, which

can be obtained by repeated iteration of the function. If the contractive condition is slightly

weaker, then some other iteration scheme is required. Even if the fixed point can be obtained by
function iteration, it is not without interest to determine if other iteration procedures converge
to the fixed point.

A generalization of a nonexpansive map with at least one fixed point that of a quasi-

nonexpansive map. A function T is a quasi-nonexpansive map if it has at least one fixed point,

and, for each fixed point p, [[Tx -p[[ _< [Ix -p[[. The following is due to Dotson [12].
THEOREM 4. Let E be a strictly convex Banach space, C a closed convex subset of E, T

a continuous quasi-nonexpansive selfmap of C such that T(C) C K C C, where K is compact.
Let x0 E C and consider a Mann iteration process such that {c,} clusters at some point in

(0,1). Then the sequences {x,,}, {v,} converge strongly to a fixed point of T.
A contractive definition which is included in the class of quasi-contractive maps is the

following, due to Zamfirescu [52]. A map satisfies condition Z if, for each pair of points x, y in
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the space, at least one of the following is true:

(i) IlTx Tyll <_ ,llx yll, (ii) []Tx Ty[] <_/3[[[x Tx[[ + ]]y- Ty[[], or

(iii) [[Tx Ty[[ <_ 3’[[Ix Ty[[ + [[y- Tx[[],
where a,/3, 3’ are real nonnegative constants satisfying a < 1,/3, 3’ < 1/2. As shown in [52], T
has a unique fixed point, which can be obtained by repeated iteration of the function. The

following result appears in [42].
THEOREM 5. ([42, Theorem 4]). Let X be a uniformly convex Banach space, E a closed

convex subset of X, T a selfmap of E satisfying condition Z. Then the Mann iterative process

with {c,} satisfying conditions (i), (ii), and (iv) converges to the fixed point of T.

A generalization of definition Z was made by Ciric [11]. A map satisfies condition C if

there exists a constant k satisfying 0 _< k < 1 such that, for each pair of points x, y in the

space,

IlTx Tyll < k max{llx ll, Ilx TxII, Ilu TyII, II Tull, II
In [42] the author proved the following for Hilbert spaces.

THEOREM 6. ([42, Theorem 7]). Let H be a Hilbert space, T a selfmap of H satisfying

condition C. Then the Mann iterative process, with {c,} satisfying conditions (i)-(iii) and

limsup c, < 1 k2 converges to the fixed point of T.
Chidume [10] has extended the above result to gv spaces, p > 2, under the conditions

k2(p-1)< 1 and lim sup c, <(p-1)--k.
As noted earlier, if T is continuous, then, if the Mann iterative process converges, it must

converge to a fixed point of T. If T is not continuous, there is no guarantee that, even if the

Mann process converges, it will converge to a fixed point of T. Consider, for example, the map

T defined by TO T1 0, Tz 1, 0 < z < 1. Then T is a selfmap of [0,1], with a fixed point

at x 0. However, the Mann iteration scheme, with cn 1/(n + 1), 0 < 0 < 1, converges to

1, which is not a fixed point of T.
A Inap T is said to be strictly-pseudocontractive if there exists a constant k, 0 _< k < 1

such that, for all points x, y in the space,

[ITx Tyll <_ Ilx y]l + kll(I T)z -(I T)yII.
We shall call denote the class of all such maps by P2. Clearly P2 mappings contain the nonex-

pansive mappings, but the classes P2, C, and quasi-nonexpansive mappings are independent.

THEOREM 7. ([42, Theorem 8]). Let H be a Hilbert space, E a compact, convex subset

of H, T a P2 selfmap of E. Then the Mann iteration scheme with {c, } satisfying conditions

(i)-(iii) and limsup c, c < 1 k, converges strongly to a fixed point of T.

A pseudocontractive mapping is a P2 mapping with k 1. Let P3 denote the family of

pseudocontractive mappings. Hicks and Kubicek [22] gave an exaxaple of a P3 mapping with

a fixed point such that the Mann iterative procedure, with c,., 1/(n + 1), does not converge

to the fixed point.
Ishikawa [24] defined the following iterative procedure. Given any x0 in the space, define

x,+, a,T[nTx, + (I ft,)x,.,] + (I

where {a, }, {/3, } are sequences of positive numbers satisfying the conditions 0 < c,, _</3. <_
1, lim/3. 0, c,,13. oo. He then established the following result.

THEOREM 8. Let E be a convex, compact subset of a Hilbert space H, T a lipschitzian

P selfmap of E. Then {x. } converges strongly to a fixed point of T.
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Qihou [38] extended the above result to lipschitzian hemicontractive maps. A hemicon-
tractive map is a pseudocontractive map with respect to a fixed point; i.e., if p is any fixed

point of T, and x is any point in the space, then T satisfies IITx pll <_ IIx p]l + ]Ix Tx]].
Neither the proof of Qihou nor Ishikawa can be used to establish a similar result for the

Mann iterative technique.
In 1968 Kannan [27] introduced a contractive definition which did not require continuity

of the map. There then followed a spate of fixed point papers dealing with fixed points for a

variety of maps which were not necessarily continuous. For example, maps of type C and Z
need not be continuous. In an earlier paper the author [45] partially ordered many of these
definitions. As noted above, it has been shown that the Mann iteration scheme converges for
some of these. For other contractive definitions it is not possible to determine whether or not
the Mann or Ishikawa iteration processes converge. However, in some eases it is possible to
show that, if they do converge, then they must converge to a fixed point of T. The following
theorems illustrate this idea.

THEOREM 9. ([42, Theorems 5,6]). Let X be a Banach space, T a selfmap of X, T E C
or T E P2. Let {c,,} satisfy the conditions (i), (ii), and bounded away from zero. Then, if the

corresponding Mann iteration process converges, it converges to a fixed point of T.
THEOREM 10. ([46, Theorem 1]). Let X be a closed convex subset of a normed space,

T a selfmap of X satisfying the property that there exist constants c, k > 0, 0 < k < 1 such

that, for each x, y X,

IITx Ty[[ <_ k max{cllx ttll, [ll Txll / I[Y TYH], Ill x TyII + Ily TII]}.

Let {c,,} satisfy conditions (i), (ii), and limc, > 0. If the Mann iteration scheme converges,
then it converges to a fixed point of T.

A contractive definition which is independent of that of Ciric is the following, due to Pal
and Maiti [37]. For each pair of points in the space, at least one of the following conditions is

satisfied:

(i) [Ix Tx[[ + [[y Ty[[ <_ a[[x y[[, 1 < ot < 2,
(ii) [Ix Tx[I + I[Y- TYI[ <- {[[x Ty]l + I[Y- Tzl[ + x Y]I}, 1/2 _</3 < 2/3,
(iii) ]Ix Tx]] + I]Y Ty]] + ]]Tx Ty]] <_ 7{]Ix Ty]] + ]]y Tx]]}, 1 _< 7 < 3/2,
(iv) IlTx Tyll <_ 6 max{l]x Y]I, [[x Tx][, ]IY Ty]], []lx Tyll + [[y Txl[]/2}, 0 < 6 < 1.

Using this demition the author established the following result.
TI-ImOIM ll. ([46, Theorem 2]). Let X be a manaeh space, a selfmap of X satisfying

the bove contractive definition. Then if the Mann iteration scheme, with {cn} satisfying
conditions (i), (ii), and lim , > 0, converges, it converges to a fixed point of T.

Similar results have been established for the Ishikawa procedure. In its original form
the Ishikawa procedure does not include the Mann iteration process because of the condition
0 <_ cn _</3n _< 1. For, if the Ishikawa process were to include the Mann process as a special
case, then one would have to assign each/3n to be zero, forcing then each cn to be zero. In an

effort to have an Ishikwa type iteration scheme which does include the Mann iterative process
as a special case, some authors have modified the inequality condition to real 0 _< n,/3n _< 1.
This change is reflected in the following two theorems.

THFOREM 12. ([35, Theorem 1.2]). Let X be a normed linear space, (7 a closed convex

subset of X. Let T be a seffmap o C satisfying the contractive condition: there exists a

constant k, 0 _< k < I, such that, for each pair of points m, y in X,
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If the Ishikawa iteration scheme, with the an bounded away from zero, converges to a

point p, then p is a fixed point of T.
THEOREM 13. ([40). Let E be a closed convex subset of a Banach space, X, T a selfmap

of X satisfying the condition: there exists constants c, k _> 0, 0 _< k < 1, such that, for each

pair of points z, y in X,

][Tx Tyl[ k max{cllx ll, [}lx Txll / Ily TYl]],[]I x TyII / Ily- Txll]).

If the Ishikawa scheme, with {an}, {fin} satisfying the conditions 0 < a _< a,, _< 1, 0 _< fl, _< 1

and lim fl, 0, converges to a point p, then p is a fixed point of T.
In some theorems of this type, the contractive definition is weak enough that the a priori

existence of a fixed point for T cannot be assured. Thus the convergence of the iteration

procedure also yields the existence of a fixed point.
The literature also contains theorems of this type for other contractive definitions. In

1988 the author [47] proved that, for many contractive definitions, even though the function

need not be continuous everywhere, it is always continuous in a neighborhood of a fixed point.

Therefore, assuming the convergence of the Mann procedure is tantamount, in some cases, to

assuming the convergence to a fixed point, in light of the early result of Mann [32].
We now return to nonexpansive maps.

THEOREM 14. ([1]). Let K be a closed bounded convex subset of a Hilbert space H, T a

nonexpansive selfmap of K. For each point e of K, the Cesaro transform of {T’e} converges

weakly to a fixed point of T.
If T is also an odd map, then Baillon [2] showed that the convergence of the Cesaro

transform of {The} is strong. He also extended the above theorm to L’ spaces.

We now mention some results for other matrix transforms of iterates of T.

THEOREM 15. ([5, Theorem 1]). Let T be a Hilbert space, C a closed bounded convex

subset of H, T a nonexpansive selfmap of C. Suppose that A is an infinite matrix with zero

column limits and satisfies lim,, k(a,,,k+l a,,k)+ 0. Then, for each x in C,{ a,.,,T’x}
converges weakly to a fixed point of T.

A sequence x is said to be almost convergent to a limit q if lim,[x,, + x,,+l +... +
x,.,+,_ ]/n q, uniformly in p. An infinite matrix A is said to be strongly regular if A assigns

a limit to each almost convergent sequence. Necessary and sufficient conditions for A to be

strongly regular were established by Lorentz [31]. These conditions are that A be regular and

also satisfy lim, E la-,*+ a-l 0.

A uniformly convex Banach space X has a modulus of convexity $(e) defined by

(5(e) ink’{1 ]Ix yll/2 IIll 1, IIll 1, I1 yll }, 0 < 2.

Let {u,,} be a bounded sequence in a closed convex subset C of X. Define rm(x) sup{llu.

zll- n >_ m}, d denote by c,,, the unique point in C with the property that r,,,(c,,,)
inf{rm(x)’x E C}. Then limcm c, and c is called the asymptotic center of {u,,}. (See, e.g.

[41)
Bruck proved the following theorem.
THEOREM 16. ([9, Theorem 1.1]). Suppose that C is a closed convex subset of a real

Hilbert space and T is a nonexpansive selfmap of C with a fixed point. Then for each x in
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C, A a strongly regular matrix, the A-transform of T"x converges weakly to a fixed point p,
which is the asymptotic centcr of {T’x}.

Schoenberg [51] obtained the following characterization for nonexpansive maps on a Hilbert

space.

THEOREM 17. ([51]). Let T be a nonexpansive of a Hilbert space H,A be a nonnegative
matrix with row sums one and zero column limits,

k----0

Then the following are equivalent;
(a) {S,} is weakly convergent to the asymptotic center z of {T"x}.
(b) {,.,c is weakly convergent to a fixed point for T.
(c) If V is a weak limit point of {S,}, then lim,...oo(Re(T"z T"+*z,z Ty)) 0

(d) If y is a weak limit point of {S,}, then

(e) Each weak limit point of {S,} is a fixed point of T.
The following theorem establishes a fixed point for a contractive definition which includes

nonexpansive mappings.
THEOREM 18. [34]. Let X be a uniformly convex space, K a nonempty closed and

uniformly convex subset of X, T a selfmap of K satisfying

IITx Tyl[ < a(x, y)llx Yll + b(x, y)llx

b’(x,y)lly Tyll + c(x,y)llx Tyll + c’(x,y)lly Txll (1.2)

where a,b,b’,c’ > O,(a + b+ b’ + c + c’)(x,y) < 1, and b’(z,y) b(y,z),c’(x,y) c(x,y), for
all x, y in X. If

sup (b+c’)(x,y) < 1 (1.3)

and

inf IIx TxlI 0 for some finite r

then T has a fixed point in K.
Define

(1.4)

(y)- a.lly- T#ell", n O, 1,2,...,1 < p< co. (1.5)
j=0

where A is any normegative triangular matrix with row sums one, y, e, E K. For each n define

s to be the unique point of K where (1.5) assumes its minimum.

THEOREM 19. ([48, Theorem 2]). Let 1 < p < oo, X e’,K a nonempty closed,
bounded, convex subset of X, T an asymptotically regular selfmap of K satisfying (1.2) and

(1.3) with b b’. Then each weak limit point of {s } is a fixed point of T.
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THEOREM 20. ([48, Theorem 3]). Let 1 < p < o,X gp, K a noneinpty closed,
bounded, convex subset of X, T a quasi-nonexpansive selfmap of Ix’. If each subsequential
weak limit of {s is a fixed point of T, then {s converges weakly to a fixed point of T.

The special case of the above theorems in which A is the Cesaro matrix and T is nonex-

pansive appear in Beauzamy and Enflo [4].
We shall now examine two other iteration methods for obtaining fixed points. The first of

these is due to Kirk [29] and is defined as follows. Let {x,,} be any sequence of points in the

space. Then the iteration procedure is defined by the operator

S a,T’, (1.6)
’-0

where k is a fixed integer, k >_ 1,a, >_ 0, 0, 1,2,...,a > 0 and =0 a, 1.

For T any nonexpansive selfmap of a convex set, S and T have the same fixed points. (See
[29].)

Let T be a selfmap of a Banach space X satisfying, for each x, y in X,

IIT: Tull <_ mx{ll: ulI, [11: T:II + Ilu TulI]/., [11: Tull + Ilu T:II]/2}. (1.7)

In [41] it is shown that, if S satisfies (1.6), then S and T have the same fixed points. The

following result is then proved.
THEOREM 21. ([41, Theorem 2]). Let X be a uniformly convex Banach space, K a

bounded closed convex subset of X, T a selfmap of K which satisfies condition (7), S defined

by (6). If I- S maps bounded closed subsets of K into closed sets, then, for each x0 E K the

sequence {S"x0 } converges to a fLxed point of T in K.
The other fixed point iteration procedure is defined by

s= a, 1, aa+ 7 0 for at least one integer k.
=0

Massa [33] has shovn that, if T is quasi-nonexpansive, then S and T have the same fixed

points. He has also proved the following.
THEOREM 22. ([33, Theorem 2]). Let If be a closed convex subset of a uniformly convex

Banach space X, T a selfmap of K satisfying

IITx Tull <_ ,(, u)llx Yll + b(:, g)(ll: T:II + Ilu TulI) + ,:(:, Y)(II Tull + Ilu T:II),

where a, b, c, >_ 0, (a + 2b+ 2c)(x, y) _< 1,inf,yeK b(x, V) > 0, and T has at least one fixed point.

Then {S"x converges to the only fixed point of T.

2. RATE OF CONVERGENCE.
There has been no systematic study of the rate of convergence for these iteration proce-

dures, and it is doubtful if any global statements can be made, since there is nothing about these

iteration procedures to cause their analysis to be different from that of other approximation
methods.

The author [44] obtained some evidence on the behavior of the Mann iteration procedure
for the decreasing functions f(x) 1 xrn,g(x) (1 z) for 1 _< rn <: 6 and c,,

[(n + 1)(n + 2)]-1/’,3 _< k _< 8. The fixed point of each function was first found by the
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bisection method, accurate to 10 places. Then both the Mann iteration and Newton-Raphson
methods were employed to find each fixed point to within 8 places, using initial guesses of

x0 .1, .2,..., .9. The author [43] also examined the functions g for m 7, 8,..., 29, with an

initial guess of x0 .9, and a, , (n + 1)-1/2. In each case the Mann iterative procedure
converged to a fixed point (accurate to eight places) in 9-12 iterations, whereas the Ishikawa

method required from 38 to 42 iterations for the same degree of accuracy. For increasing
functions the Ishikawa method is better than the Mann process, but ordinary function iteration

is the best of all three for increasing functions.

An examination of the printout showed that the Newton-Raphson method converges faster

than the Mann scheme. This is not surprising, since the Newton-Raphson method converges
quadratically, whereas the Mann process converges linearly. However, whereas the rate of

convergence of the Newton-Raphson method is very sensitive to the starting point, the rate of

convergence for the Mann process appears to be independent of the initial guess.

3. STABILITY.
We shall now discuss the question of stability of iteration processes, adopting the definition

of stability that appears in [19].
Let X be a Banach space, T a selfmap of X, and assume that xn+l f(T,x,) defines some

iteration procedure involving T. For example, f(T, Xn) Tz Suppose that {x, converges to

a fixed point p of T. Let {y,}be an arbitrary sequence in X and define

for n 0,1,2, If lim, 0 implies that lim, y, p, then the iteration procedure
f(T, x) is said to be T-stable. The first result on T-stable mappings was proved by Ostrovski

for the Banach contraction principle. In [20] the authors show that function iteration is stable

for a variety of contractive definitions. Their best result for function iteration is the following.
THEOREM 23. ([20, Theorem 2]). Let X be a complete metric space, T a selfmap

of X satisfying the contractive condition of Zamfirescu. Let p be the fixed point of T. Let

xo
_
K, set x,+l Txn,n >_ O. Let {y,} be a sequence in X, and set , d(y,+l,Ty,) for

n 0,1, 2, Then

< + + 0,
k=O k-O

where

=max a,l_,l_7
and

lim y, p if and only if lim en=0.

For the Mann iteration procedure their best result is the following.
THEOREM 24. ([20, Theorem 3]). Le (X, [[.[[) be a normed linear space, T a selfmap ofX

satisfying the Zamfirescu condition. Let x0 E X, and suppose that there exists a fixed point p
and z, p, where {x,} denotes the Mann iterative procedures with the {c,} satisfying (i), (ii),
and0 < a < c. < b < 1. Suppose {y.} is asequence in X ande. IIv,.+-[(1-c.)y.+c.Tv.]II
for n 0,1, 2, Then
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liP- Y-+I] -< liP- x-+ll + (1 a 4- a)n+l [Ix0

2b(1 12 -[- a)n+l [Ix,- Tx,[[ + (1 a +
=0 =0

where

{t=max C,l_fl, l_7
and

n =0,1,2,...,

lim y,, p if and only if lim ,, 0.

For the iteration method of Kirk [29], they have the following result.

THEOREM 25. ([20, Theorem 4]). Let (X, I1" II) be Ba=ch spce, T seifmp of X

satisfying the Banach contractive condition ilT-Tull < cllx-vll for some constant c, 0 <_ c < 1.

Let p be the fixed point of T, z0 an arbitrary point of X. Set

k

Xn+l a,T’x,, for n 0, 1,2,...,
t--0

where k is an integer such that k >_ 1, a, >_ 0 for 0,1, 2,..., k, al > 0, and

k

e,, l[, aiT’Y’ll for n 0, 1,2,....
t-’0

Then

i=0 t=O j---0

n 0,1,2,...

and

lim y,, p if and only if lim,, 0.

In a recent paper the author [49] has proved each of the above theorems for a contractive

definition independent of that of Zamfirescu.

Consider the following contractive condition: there exists a constant c satisfying 0 < c < 1

such that, for each pair of points x, y in X,

IITx Tyll < cmax{llx Vii, Ilx TVlI, IlU Txll}. (3.1)

Our first result is the following.
THEOREM 26. ([49, Theorem 1]). Let (X, d) be a complete metric space, T a selfmap

of X satisfying (3.1). Let p be the fixed point of T. Let x0 E X and define x,,+l Tx,. Let

{y,, } C X. Define e,-, d(y,,+ l, Ty,,). Then

d(p, yn+ < d(p, Xn+l + rrlcn+l-kd(xk, Xk+ -1- crt+l d(xo, Yo "+ Crt-kk,
k=0 k---0
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where m 1/(1 c), and lim,-oo p if and only if lim,,_o , 0.

THEOREM 27. ([49, Theorem 2]). Let (X, I1" II) be a Banach space, T a selfmap of X
satisfying (3.1), p the fixed point of T. Let {z,} denote the Mann iterative process with the

{c,} satisfying (i)- (iii),

lim II(1 ci + cci o,

and

[xx (1 c, + cc, converges
.=0 i=j+!

Let (y,} C X and define ,, Ily.+ (1 c.)y. c,Ty, ll. Then

lip- ./, < lip-
i=0 i=j+l

H(1 c, + ,:,)11o uoll + (1 c, + cc,)e.,
i=o /=o i=j+

where it is understood that the product is 1 when j n. Then

hm /,,=p if and only if lim e,=0.

The stability result for Kirk iterations has been extended to the two independent contrac-

tive definitions mentioned earlier.

THEOREM 28. ([49, Theorem 3]). Let X be a Banach space, T a selfmap of X satisfying
condition (3.1). Let p be the fixed point of T, xo E X, and define {Z,+l} as in (1.6). Let

{!/,, } C X, and define

k. Ilu. ,T’u.II fo. 0, 1, 2,

Then, with m 1/(1- c),

j=0 i=0 i=0

._ (EiCi)n+l I1 o  o11/ (o, 0
i=0 j=0 i=0

and lim,,_.o. p if and only if lim,-oo e, 0.

THEOREM 29. ([49, Theorem 4]). Let X be a Banach space, T a selfmap of X satisfying
condition Z. Let p be the fixed point ofT, z0 E X, and define {Z,+l} as in (1.6). Let {/,} C X,
and define

k,, IIv. ,T’u.II fo., 0, 1, 2,....
i=0
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Then, with

{=max a, 1_,1_ 7

+
t=0 ./=0

vand lim,-oo y, p if and only if lim,-.oo e, 0.

We shall now prove that the Ishikawa iteration procedure is T-stable for maps satisfying
either condition Z or (3.1).

THEOREM 30. Let (X, I1" II) be a Banach space, T a selfmap of X satisfying (3.1). Let

{x, } be defined by the Ishikawa process; i.e.,

Xn+ (1 -a.)x. +a.Tz.,z. (1 .)x,, + .Tx., where 0 </,, < 1,0 < a < or. < 1

for all n, and the {a.} satisfy lim. 1-Ii"=l(1- ai + cai) 0 and

converges.
Let {y} C X, and define

Then

r-0

,=0 j=i+l

.--I

E H (1- a.i + ca:i)i,
t=O

where m c/(1 c), and lim.-oo y. p if and only if lim.-oo . 0.

Proof. Let p be the fixed point of T. Then

(3.2)

II.+i-vll-< ll(1 a.)x, +a.Tz,,-vll _< (I- .)II,,-vll + a.llTz.-pll.

IIT,, Tpll _< m{ll,, r’ll, II,, TPlI, II’- T.II) II,, PlI.

But
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I1=. pll I1(1 .). + $.Tz. pll -< (1 .)llz. pll + .IIT. pll

< (1 /. + c/.)11. pll -< I1. pll.

Therefore [[z.+, PI[ -< (1 a. + ca.)[Ix. p[[, and {[Izn p[[} is monotone decreasing in

n, and so converges to a limit d > 0. If d > 0, then, taking the limit as n oo, in the
above inequality, yields d _< (1 -a(1 -c))d < d, a contradiction. Therefore d 0 and {z.}
converges to p. Using (3.1), [Ix. Tx.[[ < [Ix. p[[ + [[Tp Tx.[[ < (1 + c)[[x. p[[, and

lim. [Ix. Tx.[[ 0. Note also that x. - p implies z. p, and hence [[z. Tz.[[ O.
For any x,y in X,[[Tx- Ty[[ <_ m[[x-Tx[[ + c[[x- y[[, where m c/(1 -c). Thus

Ilu.+, pll < I1.+ vii + I1(1 .). + a,.,Tz. (1 c.)y. a.T[(1 /.)y,, + Z.Tu.]II + .
But

SO

and (3.2) follows by induction.
An infinite matrix A is called multiplicative if the A-limit of a convergent sequence is equal

to some constant multiple of the limit of the sequence. If the matrix has zero colum limits
and finite norm, then the multiplier is the limit of the row sums.

Returning to the proof of the theorem, suppose that ,, 0. Let A denote the lower
triangular matrix with nonzero entries a,. mc,0,

a.k ma._k 11 (1 trj + coL/), k < n.

j=k+l

Then, since Ilz,, Tz.[[ O, []z. Tz.[[ O, d A is multiplicative, the right hd side
of (3.2) tends to zero n , d p.

Suppo . p.

0 e. fly.+, (I a.)y. a.T[(l $.)y. + D.T.]II

Uy.+, p]] + (1 a.)][y. p[[ + a.][T[(l .)y. + .ry.] rp[]

II.+ -II + II. -II o.
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THEOREM 31. Let (X, II ]l) be a Banach space, T a selfmap of X satisfying condition

Z. Let { z, }, y, }, , }, a,, }, {,, be as in Theorem 30. Then

n--1

E 2a,_, H (I cU + f%)l]z,- T:r.,ll + 2a,,]]z,,
t=0

E 2a,,_, (1 % + 6%)1]z, Tz,[ + ,,+
t=0 j--t+l

,=0

and lim,_ y, p if and only if lim,-_.o e,, 0.

The proof is similar to that of Theorem 1 and will therefore be omitted.

The following establishes a stability theorem for Massa’s iteration procedure.
THEOREM 32. ([49, Theorem 5]). Let T satisfy the Banach contraction principle. Let

x0 E X, and define Zn+l SZ,, where S satisfies (1.8). Let {y,,} C X, and define

Then

,=0 j=0 i=0

and lim,,--.oo y,, p if and only if lim,..,oo , 0.
We conclude with a result on stability for nonexpansive maps. D. de Figureiredo [26, p.

230] established the following result.
THEOREM 33. Let H be a Hilbert space and C a dosed, bounded, and convex subset

in H containing 0. If T is any nonexpansive selfmap of C, then, for any z0 in C, the sequence

{z, } defined by

X T: "x,,_,n 1,2,...and T,,x ---Tx,
converges strongly to a fixed point of T.

THEOREM 34. ([19, Theorem 2]). Let x0 E X, where (X, I1" II)is nomed linear space.

Suppose that T is a nonexpansive selfmap of X. Let

,r(.+l) n + 1
f(T, xn) Xn+ *n+l gn, n 0, 1,2,...where Tn+lx Tx.n+2

Then f(T,z,) is T-stable.
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