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ABSTRACT. Outer measures are used to obtain measures that are maximal with respect to

a normal lattice. Alternate proofs are then given extending the measure theoretic

characterizations of a normal lattice to an arbitrary, non-negatlve finitely additive

measure on the algebra generated by the lattice. Finally these general results are

used to consider o-smooth measures with respect to the lattice when further conditions

on the lattice hold.
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I. INTRODUCTION AND BACKGROUND.

A measure theoretic (equivalently filter) characterization of normal lattices is

well known (see e.g. Frollk [I]) and we will give here an alternate proof of this. M.

Szeto has considered (see [2]) the relationship between measures that are maximal with

respect to a lattice and lattice regular measures in the case of normal and arbitrary

lattices of subsets. We consider here the case of a normal lattice, and first give an

alternate presentation to the one given by M. Szeto. We then apply these results to

extend the characteristic result of normal lattices from zero-one valued measures to

arbltrary non-negatlve, non-trlvlal finitely additive measures on the algebra

generated by the lattice (see Theorem 2.2). Finally in the third and last section we

extend the results of Szeto [2] by considering a measure which is o-smooth with

respect to a lattice, and give results about the associated maximal measure when the

lattice is normal (see e.g. Theorem 3.4), and also countably paracompact (see e.g.

Theorem 3.2).

We adhere to standard lattice and measure theoretic terminology consistent with

Frollk [I], Szeto [3] and Wallman [4], and we give the main definitions and notations

that will be used throughout this paper before considering normal lattices.

Let X be an abstract set, and L denote the lattice of subsets of X. We assume

that , X e L for most of our results. First:
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Lattice Terminology

A(L) is the algebra generated by L.

0j (L) is the .-alebra generated by L.

,S(L) is the lattice of all countable intersections of sets fcom L We have a

delta lattice (-lattlce) if (L) L.

(L) is the lattice of arbitrary intersections of sets of L.

L Is complemented if L L -> L’ E L (L Is an algebra).

L is normal if for all Lt, L
2 E L such that e1t2_ there exists t,2

such that L= L

’ L2’ where L, L L
2

E L then h L3 whereL coal. locates iteself if LL

L,LI’ and LL_ and L3,L4 e L. Note L coallocates itsel [ and only if L

norma I.

L is compact if every covering of X by elements of L’ has a finite subcovering.

L is countably compact if every countable covering of X by elements of L’ has a

finite subcoverlng.

L is countably paracompact if, whenever A +, A L there exists B L such
n n n

that A C B and B’
n n n

Measure Terminology

We denote by M(L) the finitely additive bounded measures on A(L) (we may and do

assume all elements of M(L) are 0).

p E M(L) is L-regular if for any A E A(L), p(A) sup{p(L)IL=A,LeL};
(equivalently) inf

EM(L) is -smooth on L if L E L, n l, 2 and L +4 ffi> (Ln) 0.
n n

p eM(L) is -smooth on A(L) if A E A(L), n I, 2 and A +4 ffi> (An) 0.
n n

Note is -smooth on A(L) iff is countably additive.

We will use the following notations:

MR(L) the set of L-regular measures of M(L).

M (L) the set of r-smooth measures on L of M(L).

M(L) the set of -smooth measures on A(L) of M(L).

M(L) the set of L-regular measures of M(L). Note that if MR(L) and

p cM (L) then p M(L).
Also we denote by I(L), IR(L) I(L), I(L) and I(L) the subsets of M(L),

MR(L), M(L), M(L) and M(L) consisting of the zero-one valued measures.

Now we consider Pl’ 2 M(L): 1 2(L) means I(L) 2(L) for L E L. Note

1 2(L) and l(X) 2(X) -> P2 & 1 (L’)" We have the following results:

1). If L is a normal lattice and if I(L) and if Ul’U2 IR(L) and (L),
(L). Then u u2.

2). Let 1’2 e MR(L)’ Pl 2 (L) and I(X) 2(X), then 1 P2"
We shall prove 1): Let X be an arbitrary set and L a lattice of subsets with

4, X e L, and also let I(L). For EX, we define ’(E) inf{(L’)lEL’ LeL}.
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It is easy to see tlnat !., a flnitely subaddltive outer measure, and B’(L).

Moreover ’ on L if and only if e IR(L). Next let e I(L) and define

F {L e LIB’(L)ffil}. It is easy to see that F is an L-filter.

We also have:

If L is normal, then F is an L-ultra filter.

PROOF. Suppose FCH L-filter, then there exists L E H and L F. Therefore

’(L) 0 which means LC’, (’)ffi 0. This implies () I, therefore e FH

using ’(L). Therefore /L e H and since L’ we get L/ e H. This

contradicts the fact that H is an -filter. Therefore F is an L-ultra filter.

As is well known, with F is associated a IR(L), and v(L). Uniqueness

follows immediately, for if L) where p e IR(L), then u ’(L’).

Suppose p(A) and v(A) ’(A) 0 where A e. Then AL’ e L’, and u(L’) O, so

L’) 0 and therefore p(A) 0 which is a contradiction. Thus we must have

o L) so v, since p,v e IR(L).
The more general case of e M(L) will be considered in the next section.

2. ASSOCIATED OUTER MEASURES.

Let eM(L)and u’(E) Inf{(L’): E=L’,L e L} where E is an arbitrary subset

of X. Then it is easy to see that ’(#) O, B’ is monotone, and [Inltely

subaddltive. We shall investigate ’, and other such "outer measures" associated

with u in this section.

First, we note that if *I’2 e M(L) and if | 2(L), and I(X) 2(X), then

Let L {L L:u(L) u’(L)} then we have

THEOREM 2. t. a) L is a lattice

b) L S’ L

where S’ is the collection of p’-measurable sets.

PROOF. Clearly we need Just prove b). Since L S’ we have L LS’ L >
L S’ L. Now let E e S’ L which Implies ’(L’) > ’(L’nE)+’(L’E’). From

which it follows that ,’(X) ’(E) + ’(E’). But (X) ,’(X), and - ,’(L’) so we

have ’(X) p’(E) + ’(E’) and (X) (E) + ,(E’) implying (E) ’(E), Z e L,

which implies E e L

We note that if U eMR(L) then ’ on A(L), and L L.

Now let U E M(L), and define A(E) -sup{(L):LCE, L e L}. Then:

a) on L and on L’. Define (E) inf{(L’):ZCL’, L e L} then

b) U U’ on L’.

PROOF. (a) I on L follows immediately from the definition of . Now let E

L’ then I(L’) sup{():CL’, eL} and () (L’), so (L’) is an upper bound

implies sup{(); CL’, L} (L’) implying (L’) < (L’) giving I 4 U on L’.
(b) - on L’ follows immediately from the definition of and combining part

’ L’(a) and ’ on L’ we get on
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(c) Let E L then (L) [nf {(L’):LL’. LeL} and I(L) I(L’). But I p on

L’ so I(L) I(L’) p(L’). So I(L) is a lower bound implying

I(L) inf {I(L’):LC L’, LeL} inf {,(L’):L= L’, LeL} which implies

I(L) (L) ’(L). Now ,(L) ICL),L -Ij ,.;,, u X p’ on L.

If L is normal lattice we can prove more, namely

(d) if L is normal then I is finitely subaddltlve on L’, and is finitely

subaddltlve.

PROOF. Let A,B e L and LCA’JB’, L e h. Then L LIUL2, L
I/

L
2 e L and

LIC A’, L2CB’ since L coallocates itself if L is normal Then u(L)

(LI)+P(L2) I(LI)+I(L2) since I on L. Now since LIA’, L2B’, and

monotone we get (L) I(LI)+I(L2) I(A’)+I(B’). Now

sup {(L):LA’QB’,LeL}, so (A’OB’) I(A’)+I(B’). Proceeding by induction we

get I is finitely subadditlve on L’. Now take EIL, i 1,2 N and L
i

e L. We

N N
e

definition ofsay I(LI u(Ei) + by . So u(g Zi) I(Q Li) wherecan
ill iffil

N N N N N N

I=IU EIC ILI" ILi L. Now U(I.IEl) I(i.IU Li) Jill I(LI) using I Is finitely

N N N N N
subadditive on L’. So ( Ei) l (Ei)+E implying ( Ei) l ,(Ei) + e.

ill i=l i=l ill

Let +0 and we get ^ is finitely subaddltlve.

(e) If L is normal, then A(L)S the -measurable sets, and restricted to

A(L) is in MR(L), and , (L), ,(X) (X).
PROOF. Let B’ L’. It is not difficult to see that in order for B S^ we must

show (A’) (A’/1B’)+(A’/1B) for all A’ e L’. Now let D e L such that DCA’B and

let F e L such that FA’ D’. It follows that A’a B’ e L’, A’ D’

DtiFCA’, and DF e L. Therefore (A’) A(A’) ) (DF) (D) + u(F) using

on 1’ and the definition of . Therefore (A’) )u(D)+sup[,(F):FA’ D’,F e L} which

implies (A’) ) B(D)+I(A’ riD’). It follows that (A’) ) (D)+(A’ND’) as A’aD’ e L’.
Also DA’B’ ==> D’ A B ==> D’ B so A’BA’ D’ So by monotonlclty of" p we

get :(A’) ,(P) + (A’/B) which implies (A’) sup{,(D):DCA’ B’,D

So (A’) (A’B’)+(A’B)= (AtB’)+(A’/B). Therefore (A’)
+ (A’SB) which implies L’r S. Therefore A(L’)Sa, but A(L’) A(L) so A(L)&S..
Now for E E A(I.) we have, by definition, (E)-Inf{A(L’):EL’,L e L} which implies
(E) Inf{(L’):EL’,L L}. This means we can cover E A(L) by L’ on the

outside. In addition, since A(L) Sa then is finitely additive. All this
implies p CMR(L Now p (L) from part (c). Using . (Z), B(L’), X L,
and X e L’ we can say p(X) (X) and (X) (X) giving us p(X) (X).

As an immediate application we have:
THEOREM 2.2. If L is a normal lattice and if p e M(L) and tf Vl, v2 MR(L), and

p (L), _(L)with p(X) Vl(X _vg(X)’ then v 2"
PROOF. From Vl(L), (L)we get v1, and .

if eMR(L) so ul vl eMR(L) and g 2 eMR(L). Therefore
e MR(L); and e MR(L). Now (X) p(X) therefore p(X) Vl(X) v2(X).

Recall MR(L); therefore a

" 1’ " v2 implying I 2"
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This extends the result of section to MR(L) from IR(L).

3. SMOOTHNESS CONSIDERATIONS.

If one assumes certain added smoothness conditions on , as well as further

demands on the lattice, then it is possible to improve some o the results of section

2.

First let e M(L) and define

(E) Inf
i= "(LI):E=I Li’’ Lie L

Then , is an outer measure in the usual sense. Also we have: , E M (L) ==> (L).

L
i

L andPROOF. I). First we consider the following: Can we have X =i ILI’

Z (LI) < (x)? We claim no, this cannot occur and that (X) ,(X). The proof of
i=l

this follows: E ,(L[) llm Z u(Li) ) llm ,( U Li) ,(X) using
i=l n+ i=l n+o i=l

n n n n

U(i=l/] Li’ i-IF u(Li’), i=ILI e L and n/-llm =iLi’ X, since, eMo(L). So

Z ,(Lf’) (X). Now X=L’ and ,’ , on n’ so (X) ,(X).
t=l

So (X) (X) Z u(L). This implies (X) ,(X) inf{ Z u(LI):XI)ILi, e L}
I=I i=l

implying .(x) (x).

2). Now back to the proof. Suppose (L) > (L), L e L. This Implies

E ,(L) < p(L) by definition of . Now X L U L’ so (X) (L) + (L’) by
i-1

countable subaddltlvlty of outer measure . So (X) (L)+(L’) (L)+u(L’)
since on L’. Now (X) (L)+(L’) < (L)+(L’) since (L) < (L), but

,(L)+v(L’) (X), so (X) < B(X). This is a contradiction therefore , on L.

Now if L is a normal lattice and countably paracompact, we have some further

results:

THEOREM 3.1. If L is normal and countably paracompact, (X) X) and v on

L. Then eM (L) implies v M (L).
o o

PROOF. Let A + , A e L then there exists B L such that AB’ and B’+ #n n n n n n
since L is countably paracompact. Now it follows that AB , so using L is normal

n n
there exists C ,D L such that A C C’, BCD’ and C’D’ . Then C’ D and one

n n n n n n n n n n
,e, ,CC’n < v. ’’. So..(__ < A) ,,d An) --) for A L. , ddo-
A) C) by monotonicity of and it is easy to show that U on L implies

v V on L’. So ,(An) dAn) An) C’)n C) ,(C). Using monotonicity of
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we get: (An) v(An) Rn C’)n C’)n (C’)n (Dn)" But

B’+ => Dn+ and e M (L) ==> (Dn) / 0. So (An) (D 0 as A +. erefore
n o n n

lira A 0 as A + by the last InequaIlty. erefore M ().
n n o

EOR 3.2. If L is normal and countably paracompact, then e M () tmplte

e M() (where Is as defined tn Section 2).

PROOF. Since (X) (X) and on L from Section 2 thls Implies e M () by
o

eorem 3.1. Now since e MR(L), therefore e M L).

THEOR 3.3. If L ts normal, countably parcompact and M (L), then on

PROOF. Fr eore 3.2 e get e N (). Since this t true, e aue hs

been extended to o(L) and call it still. Now (L) -Inf{ y. (L:): L U L, LI L}
i-I i-I

’) by monotoniclty of ^for L L. Now (L) () LI and this expression is valid

since iffilLi e 4L) Also ( ff Lt) Z u(Lt) since U eMK(L) and L’on from
i=l i=l

Section 2. So (L) ( LI) (LI). erefore
t-I

Therefore on L.

Finally we note:

THEOREM 3.4. If L is a normal lattice, and if c M (L) then restricted to A(L)
o

is in ML’)OMR(L).
PROOF. Using on L’ and the definition of we have (B’) (B’)

n n
sup {(An):AncB, An L}. Therefore there exists A such that A B’ and

n n n

(B) (An) + . Let B’4 we may assume A + Now e MR(L) since L isn n
normal, Mo(L) and let + 0 we get (B) + 0. Therefore e M (L’)/l MR(L).o

REMARK. If M (L’)= M (L), then we can improve Theorem 3.4, and state that
o o

restricted to A(L) is in M L). This condition is clearly satisfied if L is

countably paracompact.
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