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ABSTRACT. The role of Broyden’s method as a powerful quasi-Newton method for solving

unconstrained optimization problems or a system of nonlinear algebraic equations is

well known. We offer here a general convergence criterion for a method akin to

Broyden’s method in Rn. The approach is different from those o[ other convergence

proofs which are available only for the direct prediction methods.
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1. INTRODUCTION.

Let :D=Rn----- R be an F-dlfferentiable functional havlng an optimum,
x int (D).

Then the vector x at which the optimum of is realized, satisfies the equation

Vb*(x) P(x) 0

8 TIn the above, V 3---’ v--- Our concern in this paper is iteratlve
n

methods for the solution of simultaneous non-llnear equations

F(x) 0; F: Rm Rm (I.I)

in the case when the complete computation of F’ is infeasible.

In the case, F P, solving (I.I) means in effect finding the minimizer of.

The algorithm under consideration takes the form

Xn+l Xn nHnF(xn) (1

where H is generated by the method in such a way that the quasi-Newton equationn

H (F(x F(Xn)) Xn+l nn+l n+1 x (1

is satisfied at each step.
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The step length (n is chosen to promote convergence. By analogy with tlle DFP-

method (Davidson [I], Fletcher and Powel| [2]) for unconstrained opt[mlzat[ons and by

considering what [s desirable when is linear, Broyden [3] in 1965 suggested an

algorithm by which H is obtained from H by means of a rank-one update.n+ n

In the case of minimizing problems, Dixon [4] called a method perfect if Yn Yn
is obtained through line searches and a direct prediction method if Yn I. The

Iteratlve procedures (1.2) and (1.3) may be described as follows:

Choose non-singular H R
mxm

and also x Rm.
o o

For n--0,I,2 .... let Sn "-YnHn F(xn (1.4)

Yn being chosen such that

=x +s (1.5)Xn+l n n

Yn F(Xn+l) F(Xn) (1.6)

If Yn 0 then }In+l Hn (1.7)

R
m T

and vTH s O.and choose Vn such that VnYn n n n

Let Hn+ Hn + (s
n HnYn)Vn.T (I.8)

Broyden’s [3] method (sometimes called his first or good method) results from

HTsn/SnYn--, in (I.8) and is defined for Yn 0chooslng Vn n
only so long

T
Has Sn nYn O.

/
T

where Yn 0Broyden’s second or bad method results from choosing v
n Yn YnYnT-I

and Is defined so long as YnHn Sn # O.

The convergence results that are available to date are proved for the direct

prediction method [5]. Broyden has shown that his (flrst) method converges locally at

least llnearly on nonlinear problems and at least R-Superllnearly on linear problem

[61.

Later Broyden et al [7] showed that both Broyden’s good and bad methods converge

locally at least Q-superlInearly.

More and Trangsteln [8] subsequently proved that ’locally’ could be replaced by

"globallf’ when a modified form of Broyden’s method is applied to linear systems of

equations. On the other hand, Gay showed in 1979 [5] that Broyden’s good and bad

methods enjoy a finite termination property when applied to linear systems with a non-

singular matrix. He has also proved that Broyden’s good method enjoys local 2m-step

Q-quadratlc convergence on non-llnear systems.

Recently, Dennis and Walker [9] have made generalizations of thelr results [7],

[I0] and have put forward convergence theorems for least-change secant update

methods. Decker et al, have considered Broyden’s method for a class of problems

having singular Jacoblan at the root [II].

Our concern is to consider the method (1.2) which is not necessarily a direct

prediction method. Our method is not perfect because in the case of minimization

problems exact llne searches have not been performed. However, the scalars do reduce
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[I0]. Our method can thus be viewed as an Intermediate between d[rect prediction and

perfect methods.

We have called our method Broyden-like because although we have used Broyden’s

good method we have taken B to be an M-matrix [[2] unlike Broyden [3]. We haveo
used componentwise partial ordering in R

m
to pove monotone convergence of the

sequence We have asserted that under certain conditions,|| can be taken as non-n [!

negative matrices. In our analysis, F is taken as an isotone operator [12].
Operators which are monotonically decomposible (MDO) [13] can also be brought within

the scope of our convergence theorem. A local linear convergence is achieved.

Experiments with numerical problems are also encouraging. Even where Newton’s method

has diverged, our method converges in a small number of Iterations.

Section 2 contains mathematical preliminaries. Section 3 contains convergence

results. ,Section 4 gives the algorithm. Numerical examples are presented in section

5 while we incorporate some ’discussion’ in section 6.

2. MATHEMATICAL PREL IMINARIES.

DEFINITION 2.[. The componentwise partial ordering in Rm is defined as follows:
m )rFor x,y R, x (x l,x2,...xm

y (yl,Y2 ym)T, x )y if and only if

xi Yi’ i 1,2,...m,

x y <==> x y and x # y.

DEFINITION 2.2. We define for any x,yRm, such that x y, the order

interval [II]
<x,y> {u Rm/x u < y}.

DEFINITION 2.]. A mapping F:D Rm Rm is Isotone (antitone) [12] on D D
o

if Fx Fy (Fx > Fy) wheneve x y, x,yD
o

DEFINITION 2.4. We denote by L(Rm) the space of mxm matrices.

We introduce a partial ordering in L(Rm) which i,s compatible with the

componentwise partial orderlng in Rm.
DEFINITION 2.5. A real mxm matrix (aij) with aij O, for all i J is defined to

be an M-matrix [12] if A is non-singular and A-I> O.
-IIn what follows, H B so that B is a replacement for the Jacobian

n n n
J(x ), and thus B satisfies the quasi-Newton equation

B s --Yn- n 2 (2 I)
n n-I

According to Broyden’s good method, the update formula for Bn+ is given by
T

(BnS Yn)S
Bn+ B n u

n T (2.2)
s s
n n

n) (n)In what follows we denote Sn (s n)) Yn (y Bn (b i 2 ...m
ij

j ,2 m.
T

s s
n nLEMMA 2.1. (I-----) is a square trix whose diagonal elements are positive

(n)
0 and s(n)> 0 for at leastand off-diagonal elementns are non-posltlve provided s

i
one i.
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The proof is trivial.

LEMMA 2.2. Let the following conditions be fulfilled:

(n) nl (n)
(i) B (b ’." < 0 for all i i J, b > 0

n ij tj

(ii) B iq a strictly diagonally dominant matrix

(lit) {x is a moaotonic increasing sequence in the order sense.
n

(n) (s(n) (n-l) (n) (n-l)) (n)

(iv)

(sf (n))2

Then Bn+ is an M-matrix.

(n)(n-)) ls.-Yk

O. In the neighborhood

will still be smaller in

PROOF. It ollows from conditions (i) and (ii) that B ts an M-matrlx [12].
n

Siace B satisfies the Quasi-Newton equation (2.1)
n

T
s (yn- y )] s

n n-I n-I n
(Bnn Yn )sT [Bn(S

n T

th
and the (i,j) element of B is given byn+

(n) (n) (n-l)) ((n) (n-l))] s(n)
(n) k [bik (Sk -Sk Yk -Yk

b
i >--(-n-

S.

since Xn ia a monotonic increasing sequence Sn Xn+ xn
* (n) (n) (n-l)

of the solution s will be small and s s

(n)/E (n) 9
magnitude, s. (s )- will also have at most a finite magnitude.

(n+1)(n) (n)
will determine the signs of bijIf bij 0, j, the signs of bij

(n+t)
Therefore the diagonal elements of bij will be strictly positive, and the off-

diagonal elements strictly negative. Since B is a strictly diagonally dominant

matrix the strict diagonal dominance property of Bn+ will be maintained by virtue of

condition (v).

Let us denote

(n) ,(.n- l) (n) (n-l) (n)kZ [bik(n)(sk s (Yk -Yk s.___
(n) 2

(n) :(s
by ci
Condition (v) implies that

(bij
(n) (n) + c(n)(n) + cij < bii ii

i j
(n) (n)

and since ]ij is large compared to Icij ,(2.4) implies that

(n+l) b(n+l)

(2.4)
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REMARK 2. l. If however B ceases to be an M-matrlx, we can witllot violatingn+
the constraint (2.l), pre-multiply the first term in the e:pression for B by a

n+l
T

strictly positive diagonl atrix P of the sae order of B such that P g (I- -g)
n n n n

becomes the predominant term n the expression o B as given below.

B+I Pn n
g (I ’n p_) + YnT n (2,5)

S S S S

Thus, if Bn is already a stmictly diagonally dominant matr[ with b < O, i and

b(n)[i > O, Bn+l will also be a strictly diagonally dominant matrix with b+I) < O,

i j, and b (n+l)--. > O. erefore, if B is an M-atrix we can always construct

Bn+l( Bn+l) as an M-matrlx without affecting the condition BnSn Yn"
Writing B

-l
H and B-I

n n n+l Hn+[’ we obtain from (2.5)

Hn+

T Ip-1 T
s s B- Y nan)n n n

[PnBn(I -- + T
S S S S
n n n

-I

s s
T B-1 p-I T

n n n n YnSn -I B-Ip-I[I -----+ T n n
S S S S
n n n n

which is approximately equal to

T
s

[I + (s
n HnnP-lyn) --] Hn n

P-
s s
n n

Writing s n nn Bn+lYn Hn+lYn which is approximately equal to H P Yn’ Hn+l
taken as sTH p-l

Hn+ Hn nP-I + (an Hn nyn)P-I

can be

n n

sTH p-I
nun Yn

(2.6)

Therefore, Hn+ as expressed by (2.6) satisfies the Quasi-Newton equation

H s
n+ lYn n (n)
LEMMA 2.3. Let the diagonal elements, of bij of the strictly diagonally dominant

(n) M, for all I where M(>O) is amatrix B satisfy the condition l’Dii finite

constant. Then

)
.(n)

are the eigenvalues of B
.(n) 2-’-’ Ai n

PROOF. By the Greschgorin theorem,

(n) (n).(n)
bAi ii

By strict diagonal dominance of B
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erefore,

> 2_ 0"

-1
The above lemma ensures that the lower boun,i of tle e tenval,,es of H B are

strictly positive for al.l n and hPnce H remains nonig,lar at each iteration,
n

stability of the iteration proces tq therefore guarauteed,

In hak fo[loa denotes an arbitrary norm in and the opera,or

induced by the partc,lar vector nor.

3. I. CONVERGENCE.

THEOREM 3.1. Let tle following conditions be fulfilled:

ri) F:D R
m

R
m

ts Frechet differentiable on a convex set D D.
o

([i) D includes the null element and Xo, yo D such that if x < y then the
O O

order interval <x,y>D.
O

(iii) F(x) O, for all x D and F is isotone i.e. if x y, F(x) F(y) for
O

all x,y D
O

(iv) x D is an inl.ttal approximation to the solution and x 0 and F(x < O.
C) 0 O O

() The operator G 1 y H F is such that GD D
0 0 O 0

(vi) The operator B (b
()

o [j
[s a strictly diagonally dominant matrix

(o) (o) > 0with bij < O, for all i,j,ij, and bii
(vii) For B b

(n)
n ij

(n) (n-l) (n)[b (s s (Yk,k ik k k

.(s (n)) 2
i

b(n)(viii)
j ij < b(n) +_k

11

b(n) (n) (n-l)) ((n)
ik (Sk Sk Yk

.-(n) 2
(s

kn- 1) (n)
y s._a__

n 0,I,2,...

(n)] (K > 0), n 0,1,2,(ix) [bii

(x) The scalars yn(> a > O) are to be chosen such that

(a) Yn-IH-IF(x)n 4 nnYHF(x (0 n )
O

(b) sup [I yn H F’(x)] ( [I X Hn_n n-I
F’ (Xn_ ], x <Xn_l, Xn >

(xi) F’(x) is Frechet differenttable for all x..D
0
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(xti) lira [[ oHoF’(Xo)]
n
[l Xo 0 in the order sense.

Then starting from x O, an Inlt[al approximation to the solution of F(x) 0
o

is the sequeace ix of Broyden-llke approximations defined by
n

x x YnHnF( ), n O,l,...n+ n n

which converges to a solution of the equation F(x) O.

If in particular, it is possible to find a positive convergent matrix A,

A
n

i e., 0 as n+=, then the error at the nth stage is given by

II n-)- -o)11
PROOF Conditions (iii), (iv) and (xa) yield

I Xo YoHoF(xo Xo 0

By (v) 0 xl& D :D. Hence GXl D
o o

B is an M-matrix [12] by (vi). Hence H B-l> 0 s
o

x x O.
0 0 0 0

(3.3)

Because of conditions (vl), (vii) and (viii) and because s ) O, it follows from (22)
o

that B Is an M-trix. Therefore, tt B O.

Isotonicity of F, together with condition (xa) yield,

0 YIHIF(X I) YIHIF(xo YoHoF(Xo)"

Hence x2 x 0. Thus x x x oHoF(Xo GxI Do.

(3.4)

Let us assume by way of induction that 0 XkDo, k 1,2,...n, and B
k

is an M-

(k)
matrix, k [,2 n, with blj < O, i j.

Since B is an M-matrix, H
n

O,
n

By conditions (ill) and (xa) YnHnF(Xn YnHnF(Xo

YoHoF (xo)
’n .HF(o)

-% H F(o)

Therefore, x
n Xn+

Gx ED
n o

(n)
Using the fact that Bn is an M-matrlx with blj < O, i], Xn Xn+l, and the

conditions (vii) and (viii), we can conclude from Lemma (2.2) that Bn+ is an M-matrlx

(n+l)
with oi.J < O, lCj.

Therefore the induction is completed.

Thus, {xk} is a monotonic increasing sequence in the order sense and Xk D
O

for

all k.

Now, 0 x
2
-x x -xo- YIHI [F(xl) -F(Xo )]

[YIHIF(Xo YoHoF(Xo

’ Xl Xo- YIHI [F(Xl F(Xo) ]"
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D be[ng a convex set and us[n the mean value theorem in Rm we obtain from (3.5)
o

x < f [I YIHIF’(x + t(x ))] ( )dr 0 < t < (3.6)x
2 o o o

o
Here stand for differentiation in the Frechet sense.

Egain since F’(x + t( x )), 0 < t < is G differenttable,
o o

F’(x + t(x x )) is semi-continuous [12].
o o

Therefore, the operator Gl(t) F’(Xo + t(xl -Xo)) is continuous [n [O,l]. We

thus have the following from (3.6)

0 x
2

x suPt [I YIHIF’(Xo + t(Xl Xo))](l Xo

[[ 1HlF’(Xo + t(xl- Xo (Xl- Xo
assuming the supremum is attained at t, 0 < t < I.

(3.7)

By (xb), (3.7) further simplifies to

0 x
2 x[ < [I YoHoF’(xo (l x2)"

Argaing analogously as before,

Xn+l n f [(I 7nHnF’(Xn_l + t(Xn Xn_l))] (n Xn_l)dt
o

sup[l YnHnF’(Xn_l + t(xn- Xn_l))] (n n-I

[I -(nFn F’(xn_ + t(Xn n-I )] (Xn Xn-I

assuming that the supremum is attained at t .
Condition (xb) further reduces (3.9) to

Xn+ Xn [I (n-IHn-IF’(Xn-I (Xn Xn-I
( [I YoHo F’(xo)1 (x

n Xn_ I)
F’(x )]n (x x o)[I YoHo o

n+p- k
Hence Xn+p Xn 7. [I -(oHoF’(x o)] (Xl Xo

k--n

Since [I YoHoF’(xo)]n (x- Xo 0 as n* [t follows from (xii) that {Xn is a

uchy sequence and the space is complete,

x lira x R-
n

Using convergence of { it follows from (3.12) that
n

l im YnttnF(xn O.

B (x Xn).Nou, F(x n) -)--" n n+l
n

(3.8)

(3.10)

(3.11)

(3.12)

(3.13)

Therefore using (ix) (x) and the strict diagonal dominance of B
n

2kllF(Xn)l --llXn+l Xnl 0 as n+.

Continuity of F yields that

F(x O.,
Hence x is a solution of the equation F(x) O.

(3.14)

’(x 4 A, (3.11) reduces toFurther if -oHoF
o
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n+p-1
x E Ak(xl x (3.15)x

n+p n
k=n

o

The error (3.2) follows from (3.15) by making p+ and then taking II’II"
In the next theorem we provide a bound for the inverse Jacoblan approximation.

THEOREM 3.2. Let [n addition to the conditions of theorem (3.1), the following

conditions be satisfied:

Then

(a)

(b)

(c)

[F’(Xo)]
-I

exLsts and Ilt,(o]-ll, ,,
llnO (t- +oUoF’ (o>>n(t-xo>ll’

-I
PROOF. Following Rhelnboldt and Ortega [12] we show that iF(x)] exists at all

the iteration points.

-ILet

_
(xo,(8’+’) denote the closed sphere with Xo as the center and

as the radius.

Let D .q (x (’w’)-l)f D
O

Then, for xD| we have

-1

(xo) (x

(3.17)

-I
Therefore [F’(xo)] F’(x I) has an Inverse and hence for xEDI, F’(x) has an inverse.

Moreover, for x D uslng the Neumann Lemma we get

[F’(x)] -I n=o{[F’(Xo)] -I
[F’(Xo) -F’(x)]}n[F’(ro)] -I (3.19)

Therefore,

’ n:EO (s","ll --o11)"
since "’’11"-" II <

0

Therefore for xD

{x being a monotonic increasing sequence It follows from (3.10) and condition (c)
n

of Theorem (3.2),

Hence

I1-,, -o11’ II "- ) ’’J0 <": "o"o’ CXo) (’, "o)11 <

n (Xo’

(3.22)

Utilizing condition (xb) and (3.21) we get
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n

(3.23)

Using (3.10) and the monotonic increasing property of {x we further conclude that

-I oHo o

lk=o (x1- o
THEOREM 3.3. If condition (xb) of Theorem 3. is replaced by the following

condition:

(I Yn_lHn_lF’(Xn_l ) a’ sup (I H F’(x )) (3.24)
xD n n n

o
na > I, )

and all other conditions of theorem 3.1 are fulfilled then the superlinear convergence

of the sequence { is ensured.
n

POOF. tim (I YnHn F’(xn sup (I YnHn F’(xn
n+m x D

If
,

lim x then

,

o
(I "oHoF’(xo)1’ (1 > 1)

0 as n . (3.25)

0 x x x x YnHn[F(x F(Xn)]n-I n

,
f [I (x + t(x-x ))] (x-x )dt
0

YnHnF’ n n n

By arguments analogous to theorem 3.1

t[O,l]

,
+ ( n))ll II -  II-

Therefore,

II *-
< u II ’nHnF’(x + t(x*- x

nll ,:eto,.l

The continuity of F’(x) for x D and relation (3,25) yield,

is proes superIinear convergence o {Xn},
REMA 3. I.

(3.26)

It may be noted that conditions (vii) and (viii) of theorem 3.1 are

required only to prove that Bn+ is an M-matrlx provided B is so.
n

be raised as to how one can know these conditions in advance.

The question may

From computational

experience one can say that such conditions are usually satisfied. If that is not so,

we have indicated in remark 2.1 how Bn+ can be made an M-matrix when B is so.
n

4. ALGORITHM.

Step 1. Find D x x x in which F(x) is tsotone.
o
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Step 2. Choose x D and x 0 s.t. F(x < 0
O O O O

Step 3. Choose Ho ) O, yo and coute xl, k O.

Step 4. Compute A I yo H F’(x ).
o o o

If (I YoHoF’(Xo))n (xl- Xn) 0 for some n ) no go to step 5, otherwise

go to step 3.

Step 5. Compute s
k YkHkF(Xk Xk+ x

k
+ s

k
and F(Xk+

-4)Step 6. If F(Xk+l) 0([0 stop, otherwise go to step 7.

TStep 7. Compute Yk F(Xk+l F(Xk)’ SkHkYk
T

If SkHkYk O, Hk+l= H
k go to step 8.

HskOtherwise Hk+l H
k
+ (s

k HkYk) [_.]T
SkHkYk

Step 8. Compute Yk+t s.t. Yk+iHk+IF(Xo) ) YkF(Xo)

Step 9. If I YkHkF’ (Xk)) sup
x 6 <xk ,Xk+l>

[I Yk+lHk+lF’(x)] go to step I0,

otherwise go to step 8.

Step I0. If k k+l, go to step 5.

REMARK 4.1. (1) The implementation of the condlttons (xa) and (xb) for the

determination of the scalar Yn can be done by a computer. (li) The matrix P in note
n

(2.1) is arbitrary except that the elements of Pn are greater than Pn (>0). This must

lead to some arbitrariness in Hn+!. In that case the choice of Yn+l covertly depends

on Pn in addition to the conditions of (xa) and (xb). Hn+ so generated is however a

solution of the Quasi-Newton equation. (Ill) The total number of multiplications and

divisions in finding Xk+l, Hk+ and Yk+l respectively is (re+m2), 2m2+m, 2m2 + 3m,
2i.e. 5m

2
+ 5m. (iv) The number of function evaluations is m + 2m.

5. NUMERICAL EXAMPLE.

We take an example [14] in which every equation is linear except for the last

equation which is highly non-linear. We choose

F(x) [fl(x)]T, i 1,2,...N-I
n

where fl(x) =-(N+I) + 2xI + E xj, i- 1,2 N-I
j=l

and fN(x) -1 + II x]

The problem was run for N 5, 10 and 30. We take x
t

0.5 so that F(x )( O.

Incidentally F(x) is tsotone.

Define D the rectangular parallelepiped given by 0.5<xl<l.O, i 1,2,...N, and
o

(hij hlj
o

1. H
o

where
o

0.1, i N, hNN- 0.5. hij .01.choose Yo o
A [I- YoHoF’(xo)] is a convergent matrix, iJ

We summarize our computational experience in table I. The computations were

performed on a Burroughs computer at the R.C.C. Calcutta using a FORTRAN IV

language. We solved the problem and in each case the exact solution was obtained. In
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table 2 we provide a comparison of. out" res,llts with those of Newton’s raethod and

Brown’s method. For computational results of Newton’s method and Brown’s method see

[14].

Table

Dimenslon(N) No. of Iterations(n) x F(x) CPU Time

5 5 (I,I,I)
T

0 3.637 sec

I0 5 (I,I ,I)
’r

0 4.462 sec

T
30 6 (I,I ,l) 0 8.548 sec

Table 2

Dime nslon( N) Newton’ s me thod Br own’ s Me thod Broyden-llke me thod

I0

30

Converged in 18 its

3

106
2

Converged in 6 its Converged in 5 its

Converged in 9 its Converged in 5 its

Converged in 9 its Converged in 6 its

Although Brown’s method has taken a larger nmber of [teratlons, It may take less

CPU time than that of the Broyden-like method because Brown’s method is quadratically

convergent.

6. DISCUSSIONS.

(1) In the case of Broyden’s method the initial estimate B is found by taking a
o

finite difference analogue of F’(x ). We are considering the cas$ where the completeo
computation of F’(x) is infeasible. In our Broyden-like method w start with B an M-

o
matrix so that H 0. Since F is an isotone mapping it could be that all theo
entries of F’(x are non-negatlve. Nevertheless we can choose B such thato o

o
equation, breover we have used Broyden updates (good method) and as such we have

called our method the Broyden-llke method. (il) In the case of DFP’s method, H is
o

always taken as a symmetric posltive-deflnite matrix. Mreover, a symmetric M-matrix

is positive definite [12]. Hence our H can sometimes turn out to be a positve-n
definite matrix as in DFP’s method. (lii) Theorem 3.1 can only provide us with non-

negative solutions of nonlinear equations. With a suitable translation we can

transform the given equation into another equation having non-negatlve solutions

only. (iv) Our convergence proof seems to be much more elegant than the cases where

"majorizatlon principle" has been uttllzed or where the Euclidean norm of
-I

Ei(E i
--A B i- I, for linear system of equations A b)has been utilized. (v) Thex

convergence theorem 3.1 is applicable where F is Isotone. This restricts the sphere

of applicability of the theorem. However, in a large number of problems, the
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nonlinear operators are noton[cally Decomposlble (MDO) [13] and convergence theorems

along the llne of theorem 3.1 can be developed for such operators. The result would

be communicated in a separate paper.
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