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ABSTRACT. In this paper we prove a characterization theorem for the elements of the

space H’ of generalized functions defined by A.H. Zemanlan.
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1. INTRODUCTION.

The Hankel transformation defined by

h {f(x)}(y)= f (xy)I/2j (xy)f(x)dx

where J denotes the Bessel function of the first kind and order , has been

extensively studied In recent years.

A classical result concerning the Hankel transformation is the following

inversion theorem (see [I]).

THEOREM I. Let f(x) (LI(0,) be of bounded variation in a neighborhood of the

point x x0. If >- and F(y) h{f(x)}(y), then

h-l{F(y)}(xO) f F(y)(XOY I/2j (x0Y)dy-1/2 {f(x0 + 0)+f(xO- 0)}.
0

Another well known result is the Parseval’s equation (I) (see [I)).

THEOREM 2. Let f(x) and G(y) be elements of LI(0,). If F(y) and g(x) are

respectlvely the direct and inverse -th order Hankel transforms of f(x) and G(y),

then

/ f(x)g(x)dx / F(y)G(y)dy, for any
0 0
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Other conditions under which Parseval’s equation holds are given by P. Macaulay-

Owen [2].

The h -transform has been extended to several spaces of generalized functions.

Apparently, A.H. Zemanian [I] was the first to extend the Hankel transform. He

introduced the space H of testing functions consisting of all infinitely

differentiable complex-valued functions defined on I=(0,) and such that

,n
xl

for every m,nN. The Hankel transform is an automorphlsm onto H For every

f H’ (the dual space of H ), the generalized Hankel transformation H’f of f was

defined by the following generalization of Parseval’s equation

<h’f,> <f,h > for every H

h’ is an automorphism onto H’.

Later, E.L. Koh and A.H. Zemanian [3] defined the generalized complex Hankel

transformation. For a real number and a positive real number a the space J was

defined as the space of testing functions which are smooth on I and for which

xEl

where S x-- I/2 Dx2+IDx-- I/2. For each complex number y in the strip

R= C:llm yl<a, y e (- 0]} J contains the function (xy) J(xy). The

h -transform is now defined on the dual space ] as follows:

DEFINITION. Let be in the interval ( < -. Then, for every f e ’, and

y e R,

(h’f) (y)= <f(x), (xy)/2j (xy) >

E.L. Koh [4] showed that a distribution f ]’ can be written as a finite sum

of derivatives of continuous function of exponential descent. More specifically, he

established:

THOEREM 3 ([4]). Let f be ing’,. Then f is equal to a finite sum

k
d i w-(ll2)-k+l

Ci(x) (e-ax x- Pi(x)Fi(x))
i--0

where the Fi(x) are continuous on (0,-) and the P. (x) are polynomials of degree k.

Other Hankel ype transformations have been also extended to certain spaces of

generalized functions (see G. Altenburg [5], L.S. Dube and J.N. Pandey [6], J.M.

Mndez [7],...).
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In this paper we pove a characterization theorem for the generalized functions

in H’ Our proof is anaogous to the method employed in structure theorems for

Schwartz distributions (see [8] and [4]).

In this paper a function (x) will be called of rapid descent if xmDq(x) tends

to zero, as x+, for every m,qeN.

2. The space H’ of generalized functions. A characterization theorem.

A useful result due to A.H. Zemanian (see [I]) is the following

PROPOSITION I. Let f be in H’.There exist a positive constant C and nonnegatlve

integers r,k such that

<f’>l C maX{Ym,nlJ (); Omr,Onk}, for every (H.
We now present some new properties of the space H of testing functions.

m.1 n x--l/2PROPOSITION 2. Let be in H The function x (D) (x)) is

a) of rapid descent as x+=, and

b) in LI(0,-),
for every m,neN.

PROOF. It is enough to take into account that

Ixm( D)n(x-u-I/2(x)) C x
m,n

for every x I and m,

neN, C being a suitable positive constant.
m,n

The main result of this paper is the next.

THEOREM 4. A functional f is in H’ if and only if, there exist bounded

measurable functions gm (x) defined on I, for m--0,1,...,r and n=0,1,...,k, where r

and k are nonegative integers depending onf, such that

r,k x-U- I/2
<f,>=< Z (-lxl)n{xm(-D)gm,n(X)},(x)> (2.1)

m,n

for every H

PROOF. Let f be in H’. In veiw of Proposition I, there exist a constant C > 0

and nonnegative integers r and k depending on f such that

U (); 0 m ( r,0(nk}<f,> ( C maX{Ym, n

=Cmax {sup Ixm(1-D" n x-U- I/(x) I;x O(m(r,0(n(k},
x61

for every H
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Since xmiD)’ln(x-U-I/2 @(x)) is of rapid descent as x+ (Proposition 2), we get

for every H m,n,eN.

Hence

where II ILl(O,. denotes the norm on the space LI(O,). Then we can write

t<f,,>lCmax{tlD%{tm(tl--D)n(t-U-l(t))}l Ll(O,.);Omr, Onk}

for every eH

We now define the injective map

F: H FH

(Dt{tm(It--D)n(t-- I/2 (x))})m=O,..., r
n=O,... ,k

If FH is endowed with the topology induced in it by the product space

A (0 )=(LI(0 ))(r+l)(k+l) then
r,k

G:FH C

F <f, @>

is continuous linear mapping.

By application of the Hahn-Banach Theorem, G can be extended to A k(0 ).
(r+l)(k+l) r,

Therefore, since A’ (0 ) is isomorhic to (L (0 )) (see F. Treves [I0])
r,k

(m--0, ,r; n=0,.. ,k) suchthere exist (r+l) (k+l) bounded measurable functions, gm,n
that

r k
m #(x))}>=(x) D{x (D)n x--I/2G(F) <f > <gm,n

m=O, n=O
r k -DI)n [xm(-D)g

m
(x)} (x)>< x-U-I/m(

x ,n
m=O, n=O

for every e H
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On the other land, if is defined by (2) then ell’.

To see this, it is enough to prove that If_{@}veN, is a sequence in H such

x
I_ /2,vkX)}vN to zerothat v 0 as v , then the sequence {xm( D)n( converges

as v , in Ll(O,=), for every re,heN. This completes the proof of the theorem.

The Hankel-Schwartz transfqrm defined by the pair

F(y)=B f(x)}(y) f x2V+Ib (xy)f(x)dx
V 0 V

f(x)=B {F(y)}(x) f y2+Ib (xy)F(y)dy
V 0

for - , where b (z) z-J (z) and J denotes the Bessel function of the first

kind and order , was introduced by A.L. Schwamtz [9], who estbalished its inversion

formula. This integral transfommatlon has been extended by G. Altenburg [5] and J.M.

Mendez [7] to the space H’II’
of generalized functions (H=HI/2 [n their notation)

following a procedure analogous to the one employed by A.H. Zemantan [I]. By

setting V =-, we can deduce from Theorem 4 the next

COROLLARY. The functional f is in H’ if and only If, there exist bounded

measurable functions gm,n(X) defined on I, for m=O,...,r,n=O,...,k where r and k are

nonnegattve integers depending on f, such that

r k
(x)},(x)>, H.<f,> < (-)n[xm(-D)gm,n

m=O, n=O
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