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i. INTRODUCTION.

Functional differential equations(FDE) with delay provide a math-

ematical model for a physical or biological system in which the rate

of change of the system depends upon its past history. The theory of

FDE with continuous argument is well developed and has numerous appli-

cations in natural and engineering sciences. This’note continues our

earlier work [1-5] in an attempt to extend this theory to differential

equations with discontinuous argument deviations. In these papers,

ordinary differential equations with arguments having intervals of

constancy have been studied. Such equations represent a hybrid of

continuous and discrete dynamical systems and combine properties of

both differential and difference equations. They include as particu-

lar cases loaded and impulse equations, hence their importance in

control theory and in certain biomedical models. Continuity of a

solution at a point joining any two consecutive intervals implies re-

cursion relations for the values of the solution at such points.

Therefore, differential equations with piecewise constant argrument

(EPCA) are intrinsically closer to difference rather than differential
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equations. Here boundary value problems for some linear EPCA in

partial derivatives are considered and the behavior of their solutions

studied. The results are also extended to equations with positive

definite operators in Hilbert spaces.

2. BOUNDARY VALUE PROBLEMS.

The equation

2
u
t

a u b(u u
xx 0

2
describes heat flow in a rod with both diffusion a u along the rod

xx

and heat loss (or gain) across the lateral sides of the rod. Heat

loss (b > 0) or gain (b < 0) is proportional to the difference between

the temperature u(x,t) of the rod and u
0

of the surrounding medium.

In chemistry where u may stand for concentration, the above equation

says that the rate of change u
t

of the substance is due both to the

2
diffusion a u (in the x-direction) and to the fact that the sub-

xx

tance is being created (b < 0) or destroyed (b > 0) by a chemical re-

action proportional to the difference between two concentrations

u and u016._ We may change u u
0
to u and consider the equation

2
u
t

a Uxx bu.

Measuring the lateral heat change (or substance change due to a chemi-

cal reaction) at discrete moments of time leads to an equation with

piecewise constant argument

2
ut(x,t a Uxx(X,t) bu(x,nh),

t [nh, (n + l)h], n 0,i

where h > 0 is some constant. This equation can be written in the

fol-m
2

ut(x,t) a Uxx(X,t) bu(x, [t/h]h), (2.1)

where [-] designates the greatest integer function. Ordinary differen-

tial equations with arguments [t], [t n], [t + n] have been investi-

gated in [1-4], with [t + 1/2] in [5], and with [t/h]h in [7,8].

Furthermore, EPCA have been used recently in [8] to approximate solu-
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tions of equations with continuous delay.

The diffusion-convection equation

2
u
t

a u ru
xx x

describes, for instance, the concentration u(x,t) of a pollutant car-

2
ried along in a stream moving with velocity r. The term a u is the

xx

diffusion contribution and -ru is the convection component. If the
x

convection part is measured at discrete times nh, the process results

in the equation

2
ut(x t) a u (x t) ru (x,[t/h]h). (2.2)

xx x

We consider the boundary value problem (BVP) consisting of the

equation

@t
u(x,t) Q u(x, [t/h]h), (2.3)

where P and Q are polynomials of the highest degree m with coeffi-

cients that may depend only on x, the boundary conditions

m[L.u . Mjku(k-1) (0) + Njku(k-1) (i)
3 k=l

O, (2.4)

(Mjk and Njk
and the initial condition

are constants, j l,...,m)

U(X,O) UO(x) (2.5)

Here [.] designates the greatest integer function, (x,t)E [0,1]x[0,m),

and h const > 0. Equations (2.4) will be writte briefly as

Lu 0. (2.4’)

DEFINITION 2.1. A function u(x,t) is called a solution of the

above BVP if it satisfies the conditions: (i)u(x,t) is continuous in

G [0,1]x[0,); (ii)u/t and oku/xk (k 0,1...,m) exist and are

continuous in G, with the possible exception of the points (x,nh),

where one-sided derivatives exist (n 0,1,2..); (iii) u(x,t) satis-

fies equation (2.3) in G, with the possible exception of the points

(x,nh), and conditions (2.4)-(2.5).

Let u (x,t) be the solution of the given problem on the interval
n

nh < t < (n + l)h, then

OUn(X,t)/Ot + PUn(X,t) Qun(x), (2.6)
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where

u (x) un(x,nh)-n

Write
u (x,t) w (x,t) + vn(x),n n

which gives the equation

OWn/Ot + PWn + PVn(X) Qun(x),

and require that

OWn/@t_ + PWn 0, (2.7)

PVn(X) Qun(x) (2.8)

Assuming both w and v satisfy (2.4’) leads to an ordinary BVP (2.8)-
n n

(2.4 whose solution is denoted by

v (x) p-i
n

Qu
n (x)

and to BVP (2.7)-(2.4’), whose solution is sought in the form

w (x t) X(x)Tn(t).n
(2.9)

Separation of variables produces the ODE

with a solution

T + IT 0
n n

-I (t-nh)
T (t) e
n

and the BVP

P(d/dx)X- IX 0, LX 0 (2.10)

where L is defined in (2.4) and (2.4’). If BVP (2.10) has an infinite

countable set of eigenvalues I. and corresponding eigenfunctions
3

C
m i] then the seriesX. (x) [0,

3

I j (t-nh) constWn (x, t) . Cnje Xj (x) Cn39=1

represents a formal solution of problem (2.7)-(2.4’) and

Un(X,t) . Cnje-lj(t-nh)
j=l

Xj (X) + P-IQun(x)

is a formal solution of (2.3)-(2.4). At t nh we have

(2.11)

U (x) . CnjXj(x + P-iQUn(X). (2.12)
n

Therefore, assuming the sequence {Xj} is complete and orthonormal in
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m
lj yieL0, ids for the C the formulacoefficients

n3

i
X

-i

Cn-’3 -[0 j
(x) (I P Q)u (x)dx (2.13)

n

(n 0,1,2...)

C
TM

Substituting the initial function u0(x)6 [0,i] in (2.13) produces the

coefficients C0j and putting them together with u0(x in (2.11) as

n=0 gives the solution u0(x,t of BVP (2.3), (2.4), (2.5) on the inter-

val 0 < t < h. Since u (x,h) u (x,h) u (x), we can find from
0 1 1

(2.13) the numbers CI_.3 and then substitute them along with Ul(X in

(2.11), to obtain the solution u (x,t) on h < t < 2h. This method of

steps allows to extend the solution to any interval nh < t < (n+l)h.

Furthermore, continuity of the solution u(x,t) implies

u (x, (n + l)h) u (x, (n + l)h) u (x),n n+ 1 n+ 1

hence, at t (n + l)h we get from (2.11) the recursion relations

Therefore,

Xjhx.Un+l(X) Z Cnje- (x) + P-iQu (x)
3 n

(2.14)

-Xjh)u (x) u (x) Cnj (I e Xj (x)
n+l n

j=l

and

-Xjh IQ(I-p iQ)u (x) (I-P iQ)u (x) Z c (I e )(l-p- )xj(x).n+l n
j=l

nj

Multiplying by Xk(X and integrating between 0 and 1 yields the recur-

sion formulas

-XjhC Z Cnj (i e )Xjk,n+l,k Cnk-
j=l

where

Xjk ;01 Xk(X) (I p-IQ)xj (x)dx.

THEOREM 2.1. Formula (2.11), with coefficients C and functions
n3

u (x) defined by recursion relations (2 13) and (2 14), represents an

formal solution of BVP (2.3), (2.4), (2.5) in [O,l]x[nh, (n + l)h] for

n 0,i,..., if BVP (2.10) has a countable number of eigenvalues X.
3

C
TMand a complete orthonormal set of eigenfunctions X. (x) [0 i] and the

3
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initial function u0(x)Ecm[0,1] satisfies (2.4).

A different method can be used if we look for a solution with

continuous derivatives o2u/ot2 and ok+lu/toxk (k 0,1..,m) for

tE (nh, (n + l)h). In this case we differentiate (2.6) with respect to

t and obtain the equation

Oyn/Ot + P(O/Ox)y
n

0 Yn Ou /%t
n

whose solution is sought in form (2.9). Again, separation of vari-

ables produces T (t) and BVP (2.10). Integrating the solutionn

j (t-nh)
Yn(X’t) . Bnje- X. (x)

between nh and t gives

-j (t-nh)u (x t) u (x) + Bnj(l e )Xj (x)/j.n n
j=l

Continuity of the solution at t (n + l)h implies

(2.15)

(2.16)

-jhUn+1 (x) u (x) + Z Bnj (I e Xj (x)/n
j=l 3

From (2.6) and (2.15) at t nh we have

(2.17)

Yn(X’nh) (Q p)un(x),

Yn (x,nh) . BnjXj
(x),

j=l

and consequently,

Bnj ;01 Xj (x) (Q P)un(x)dx. (2.18)

THEOREM 2.2. Series (2.16), with coefficients B and functions
n3

u (x) defined by (2.17) and (2.18) formally represents a solution ofn

BVP (2.3), (2.4), (2.5) whose derivatives Ou /Ot oku x
k

n n/O (k 0,1,..m)

are continuous in [0,1]x[nh, (n + l)h] and 0 2un/ot2, ok+lun/OtO xk are

continuous in [O,l]x(nh,(n + l)h) if, in addition to the other condi-

tions of Theorem 2.1, the initial function u0(x and (Q- P)u0(x sat-

isfy (2.4).

The solution u (x,t) of the nonhomogeneous equation
n
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0u(x,t)
t

+ p u(x,t) Q u(x, [t/h]h) + f(x,t) (2.19)

on nh < t < (n + l)h is also sought in the form

Un(X,t) . Xj (X)Tnj (t), (2.20)
j=l

where Xj (x) are the eigenfunctions of the operator P. Upon multiply-

ind (2.19) by Xk(X), then integrating between 0 and 1 and changing k

to j, we obtain

T
nj

(t) + jTnj (t) qnj + fj (t)

1
X (x)Q(d/dx)u (x)dxqnj 0 j n

f. (t) I Xj (x) f(x t)dx
3 0

whence

-i -j (t-nh)
Tnj (t) (Tnj (nh) j qnj)e

-I t - (t-s)+ X
j qnj + ;nhe J

(nh <_ t < (n + l)h)

f. (s) ds,
3

T (nh)
1

nj 0Un (x) Xj (x) dx,

that is,

; ] -j(t-nh)i
Xj(x)(I- iQ)Un(X)dx eTnj (t)

0 3

-i 1
+ k3 O Xj (x)Qun(x)dx

+ ]t e-j (t-s)f. (s)ds. (2.21)
nh 3

The principal role of the operator P emerges from the above three

methods of constructing the solution. Let
m

PY pjy(m-j)
j=0

where pj are real-valued functions of classes Cm-3 on 0 < x < 1 and

L
2 i] with theP0(X) 0 on [0 I] Assuming cm[0 i] is embedded in [0,

inner product

1
(y,z) [0 y(x) z(x)dx,

BVP (2.10) is called self-adjoint if

(Py,z) (y,Pz),
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C
m ,I] that satisfy the boundary conditionsfor all y zE [0

Ly Lz O.

If BVP (2.10) is self-adjoint, then all its eigenvalues are real and

form at most a countable set without finite limit points. The eigen-

functions corresponding to different eigenvalues are orthogonal.

THEOREM 2.3. BVP (2.3),(2.4),(2.5) has a solution in

[0,1]x[nh, (n + l)h], for each n 0,i,..., given by formula (2.11) if

the following hypotheses hold true.

(i) BVP (2.10) is self-adjoint, all its eigenvalues . are posi-

tive.

(ii) For each _., the roots of the equation P(z) . 0 have
3 3

non-positive real parts.

C
m i] satisfies (2 4)(iii) The initial function u0(x)E [0,

-iQu
0

PROOF. According to (2.8), we find the solution v0(x)=P (x)

of the equation Pv
0
(x) Qu0(x) satisfying the boundary conditions

Lv
0

0. Then the difference u0(x) P-IQu0(x)Cm[0,1] satisfies

(2.4’), and therefore we conclude from (2.12) that the Fourier series. C0jXj(x converges to it absolutely and uniformly on [0,I], where

Xj(x)} is the set of the orthonormal eigenfunctions of (2.10). Since

. > 0, the series in (2.11) also converges absolutely and uniformly

on [0,1]x[0,h]. Furthermore, the same is true on [0,i] for the series

in (2.14) at n=0, and Ul(X satisfies (2.4). Hence, Ul(X should be

used now to find the solution Vl(X P-IQul(x of the equation PVl(X

Qul(x) satisfying Lv
I

0, then to calculate the coefficients C
Ij

by

(2.13) and the solution Ul(X,t of the given BVP on [0,1]x[h,2h], ac-

cording to (2.11). This procedure can be continued successively to

construct the solution u (x,t) for any n > o. From (2.12) we conclude
n

that all u (x) satisfy (2.4’) Differentiating (2.11) term by term
n
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with respect to t produces a series which converges to OUn/Ot uniform-

ly on [0,1]x[nh + , (n + l)h], for sufficienty small > 0, since

> 0. Furthermore, it follows from (2.13) that

-i 1 IQCnj xj 0 (PXj)(I P- )Un (x)dx

and since Xj(x), Un(X), and P-iQUn(X satisfy (2.4’), then

Cnj
-i I Xj (x) (P Q)un(x)dx.j 0

Hence,

Cnj < j ;0 0 (Pun QUn
-i

< c I. (2.22)
n 3

m
Let P0(X) 1 and p then in any domain T of the complex p-plane

the equation

P(d/dx)y ly 0

has m linearly independent solutions Yl Ym which are regular with

respect to pT, for sufficiently large pl, and satisfy the relations

[ -i](r-l) r-i kx r-i + O(Yk (x) e k

(k,r l,...,m)

are the different m-order roots of unity [9]. There-where l’’’’’m
fore, by virtue of condition (ii) and estimates (2.22), differentiat-

ing series (2.11) term by term r times (r I,...,) with respect to x

produces series that converge iniformly on [0,1]x[nh + ,(n + l)h],
for sufficiently small and large .. Letting t (n+l)h in each of

these series and taking into account (2.14) shows that u (x)cm[0 i]n+l

C
m I]. By virtue of (iii) the proof is completeif u (x) [0,n

REMARK i. We assumed in this theorem that P0(X) I, where P0(X)
is the leading coefficient of the operator P(d/dx). If p0 const I,

then dividing the equation Py y 0 by P0 produces an equation

whose leading coefficient is I. If P0(X) const on [0,i] and retains
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its sign, then we may assume P0(X) > 0 and use the substitution [9]

1 p1/m
Xl ;X pi/m (s)ds / 0 (s)ds

0

to reduce the above equation to a new one in the interval 0 < x < I,
1

with a constant leading coefficient.

REMARK 2. The Fourier coefficients used in the above three

methods of solving BVP (2.3) (2.4) (2.5) are closely interrelated.

Indeed, differentiating (2.11) with respect to t and comparing with

(2.15) shows the B. =-.C Furthermore, comparing (2.11) with
n3 3 n3

(2.20) and (2.13) with (2.21), we have to prove that

1
Xj (x)p-IQu (x)dx.Xj (x)Qun(x)dx ;0 n

since P-IQu (x) satisfies (2.4), then
n

1 Xk(X)p-IQu (x)dxP iQu (x) Z Xk(X) 0 nn
k=l

and applying the operator P to this equation yields

QUn(X) . IkXk(X);01 Xk(X)p-iQun(x)dx.
k=l

It remains to multiply this expansion by Xj (x) and to integrate be-

tween 0 and i.

EXAMPLE 2.1. The solution u (x,t) of equation (2.1) in
n

[0,1]x[nh, (n + l)h], with the boundary conditions Un(0,t)=Un(l,t)=0
and initial condition u (x,nh) u (x) is sought in form (2.20). Se-

n n

paration of variables produces

X. (x) -sin(,jx) T’ 2 2

3 nj(t) + a2, j Tnj (t) -bTnj (nh)

whence

2,2 2
-a j (t-nh) b

Tnj(t) Cnje 22 ’2 Tnj (nh).
a j

We put t nh in this equation and get

1 +
a2,2j2 Tnj (nh),

that is,

Tnj (t) Ej (t nh)Tnj (nh),
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where

E. (t) e
22 2

-a j t 22 2
-a j t

1 e
22.2

a . 3

At t (n + l)h we have

Tnj ((n + l)h) Ej (h)Tnj (nh)

and since

Tnj ((n + l)h) Tn+l, j
((n + l)h)

then

Tn+l,j ((n + l)h) E_.j (h)Tn_.j (nh)

and

Therefore,

n
Tnj (nh) Ej (h)T0j (0)

n
(h)T (0)Tnj (t) Ej (t nh)Ej 0j

and

(2.23)

Un(X,t) j=l’ -- En’(h)3 T0j (0)Ej(t- nh)sin(,jx).

Putting t O, n 0 gives

u0(x , T0j(0)q--sin(,jx)dx
and

1
u0(x) sin(,jx)dxT0j (0) 0

(2.24)

If Ej (h) < i, then solution (2.24) decays exponentially as t ,

uniformly with respect to x. From (2.23) it follows that this is true

if

2 2 2 a a2, 2h
-a , < b < a2, e + 1 / e 1

Furthermore, from the equations

n
E
n+l

(h) (0)Tnj (nh) mj (h)T0j (0) Tnj ((n + l)h)
j T0j

we see that Tn-’3 (nh)Tn-’3 ((n + l)h) < 0 if E. (h) < 0. The latter

inequality holds true if

22 [a2"2h ]b > a / e 1 (2.25)
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Hence, under condition (2.25), each function Tnj(t (j 1,2,..) has a

zero in the interval [nh, (n + l)h], in sharp contrast to the func-

tions Tj (t) in the Fourier expansion for the solution of the equation

ut a2Uxx bu without time delay. Moreover, the inequality Ej (h)<0

takes place for sufficiently large j and any b > 0. Therefore, for

b > 0 and sufficiently large j, the functions Tnj(t are oscillatory.

EXAMPLE 2.2. Equation (2.2) on nh < t < (n + l)h becomes

Un(X,t)/t a22Un(X,t)/x2 rU’n(X ),
and we differentiate the latter with respect to t to obtain the equa-

tion

Yn/t a22yn/X2, Yn @Un/t,

whose solution is sought in form (2.9). Separation of variables leads

to the equations

X’’ (x) + X(x) 0 T’ a2n(t) + Tn(t) 0,

and posing the boundary conditions Un(0,t Un(l,t)=0 gives .= j2,2

and

-a2, 2j 2 (t-nh)
sin(. jx)Yn(X,t) Z Tnj (nh)e

j=l

Since

then

2 ,,
Yn(X,nh) a u (x) -r u (x), u (x) Un(X,nh)__n n n

and

a u (x) r u (x) . - Tnj (nh)’sin(,jx)n n
j=l

1
Tnj(nh) =-a2"2j2- ;0 Un(X)sin(,jx)dx

1+ r,j- 0 Un(X)Cs("jx)dx"

Finally,

_a2, 2j 2 (t-nh)u (x t) u (x) + . - Tnj(nh) 1 e sin(,jx)/a2,2j 2
n n

j=l

Given the initial function u(x,0) u0(x), we can find the coeffi-

cients T0j (0) and the solution u0(x,t on 0 _< t < h. Since u0(x,h
ul(x), we can calculate the coefficients TIj (h) and the solution
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u
I
(x,t) on h < t < 2h. By the method of steps the solution can be ex-

tended to any interval [nh, (n + l)h].

EXAMPLE 2.3. Separation of variables for the equation

2 2
x
2 2

u 2u(x,t)/t a u(x,t)/ b (x, [t])/x

with the boundary conditions u(0,t) u(l,t) 0 produces the eigen-

functions X. (x) sin(,jx) and the equation

T’ (t) + a2,2j2T(t) b, 2j2T([t]),
which on the interval n < t < n + 1 becomes

2.2j2T 2 2
TTnj(t) + a nj(t) b, j nj(n)"

From here,

Tnj(t) Fj(t n)Tnj(n),
where

-a2"2j2t I -a2" 2j2t]Fj (t) e + i e b/a
2

At t n + 1 we have

Tnj (n + i) Fj (1)Tnj (n)

and since Tn_.j (n + i) Tn+l,j (n + i), then

Tn+l,j (n + i) F_.3 (1)Tn-’3 (n)

and

Tnj (n) F
n
j (1)T0j (0).

Hence,

u (x t) Z - Fn
n j (1)T0j (0)Fj(t- n)sin(,jx),

where

T0j(0) ;i0 u0(x)sin("jx)dx"

The inequalities

-a e + 1 / 1 < b < a

are equivalent to Fj (i) < 1 and ensure the exponential decay of
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u (x,t) as t m, uniformly with respect to x. Forn

2 a2, 2
b < -a / (e i),

each function Tn (t) has a zero in the interval [n, n + i], which is

impossible for the equation u
t (a

2
b)Uxx.

EXAMPLE 2.4. The equation

2 2
u(x,t)

_
.,0iq-

@t 2m 2
0 Ox

+ V(x)u(x, [t/h]h)

is a piecewise constant analogue of the one-dimensional Schr6dinger

equation

2
iq#t(x,t -q @xx(X,t)/2m0 + V(x)#(x,t).

If u(x,t) satisfies conditions (2.4) and (2.5), with m 2, then sepa-

ration of variables produces a formal solution

(t-nh)/qx (x) + p-iQun(x)u (x,t) Z Cn3en j
j=l

for nh < t < (n + l)h. Here Xj (x) are the eigenfunctions of the oper-

q2(d2/dx2)/2m0, and p-IQun(X is the solution v (x) of the equa-ator
n

tion

2
q V

n (X) 2m0V(x)u (x)n

that satisfies (2.4) and C are given by (2.13)
n3

The Fourier method can be also used to find weak solutions of BVP

(2.3), (2.4), (2.5) and it is easily generalized to similar problems in

Hilbert space. First, we remind a few well known definitions. Let H

be a Hilbert space and let P be a linear operator in H (additive and

homogeneous but, possibly, unbounded) whose domain D(P) is dense in

H, that is D(P) H. The operator P is called symmetric if (Pu,v)

(u,Pv), for any u, v D(P). If P is symmetric, then (Pu,v) is a

symmetric bilinear functional and (Pu,u) is a quadratic form. A sym-

metric operator P is called positive if (Pu,u) 0 and (Pu,u) 0 if

and only if u 0. A symmetric operator P is called positive definite

2 2 2if there exists a constant v > 0 such that (Pu,u) v llull With

every positive operator P a certain Hilbert space Hp can be associat-

ed, which is called the energy space of P. It is the completion of

D(P), with the inner product (u,V)p (Pu,v); u, v D(P). This pro-
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duct induces a new norm llUllp I/2
(Pu,u) U D(P), and if P is posi-

-i
tive definite, then llull _< 7 ....llUllp Since D(P) is dense in H, it fol-

lows by using the latter inequality that the energy space Hp of a

positive definite operator P is dense in the original space H.

Assuming P is positive definite, we may consider the solution

u(x,t) o BVP (2.3), (2.4), (2.5) for a fixed t as an element of Hp. If

D(Q) c H, then Qu(x,[t/h]h) may be treated as an abstract function

Qu([t/h]h) with the values in H. Therefore, the given BVP is reduced

to the abstract Cauchy problem

du
+ Pu Qu([t/h]h), t > 0, ut=0dt

u
0

H. (2.26)

If (2.26) has a solution, we multiply each term by an arbitrary func-

tion g(t) Hp in the sense of inner product in H and get on

nh <_ t < (n+l) h the equation

g + (u,g)p (Qu
n

g), (2.27)

C
1

where u u(nh) Conversely if u ((nh, (n + l)h);D(P)) for all
n

integers n > 0 and satisfies (2.27), then it also satisfies equation

(2.26). Indeed, if u D(P), then (u,g) p (Pu,g), and (2.27) can be

written as

[d + Pu QUn g] o, nh < t < (n + l)h.

Since Hp is dense in H, then u(t) is a solution of equation (2.26).

DEFINITION 2.2. An abstract function u(t): [O,m3 H is called

a weak solution of problem (2.26) if it satisfies the conditions:

(i)u(t) is continuous for t > 0 and strongly continuously differenti-

able for t > 0, with the possible exception of the points t nh where

one-sided derivatives exist; (ii)u(t) is continuous for t > 0 as an

abstract function with the values in Hp and satisfies equation (2.27)

on each interval nh < t < (n + l)h, for any function g(t): [O,m3 H
p

(iii)u(t) satisfies initial condition (2.26), that is,

Clearly, a weak solution u(t) is also an ordinary solution if

u(t) D(P), for any t > 0, and u(x,t) u0(x as t 0 not only in
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the norm of H but uniformly as well. It is said [I0] that a symmetric

operator P has a discrete spectrum if it has an infinite sequence j}
of eigenvalues with a single limit point at infinity and a sequence

Xj
of eigenfunctions which is complete in H. Suppose the operator P

in (2.27) is positive definite and has a discrete spectrum and assume

existence of a solution u(t) u(x,t) to equation (2.27) with the con-

dition u(0) u0. On the interval nh < t < (n + l)h this solution can

be expanded into series (2.20), where Tj(t) (u(t), Xj). To find the

coefficents Tj(t), we put g(t) X
k

in (2.27) and since X
k

does not de-

pend on t, then

’dt Xk --dt (u(t), Xk) Tk(t),

(u, Xk) p (Pu, Xk) (u, PXk) k(U,Xk) kTk(t),
which again leads to the equation

Tnj(t) + jTnj(t) (Qu
n Xj)

and to a generalization of (2.21). By selecting a proper space H, a

weak solution corresponding to conditions (2.4) can be constructed.

The proof of the following theorem is omitted.

THEOREM 2.4. If P and Q are linear operators in a Hilbert space

and P is positive definite with a discrete spectrum, then there exists

a unique weak solution of problem (2.26).
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