WHEN IS A MULTIPLICATIVE DERIVATION ADDITIVE?

MOHAMAD NAGY DAIF

Department of Mathematics Faculty of Education Umm Al-Qura University Taif, Saudi Arabia

(Received March 29, 1990 and in revised form December 19, 1990)

ABSTRACT. Our main objective in this note is to prove the following. Suppose R is a ring having an idempotent element $e(e\neq 0, e\neq 1)$ which satisfies:

 (N_1) xR=0 implies x=0.

 (M_2) eRx=0 implies x=0 (and hence Rx=0 implies x=0).

(M₂) exeR(1-e)=0 implies exe=0.

If d is any multiplicative derivation of R, then d is additive.

KEY WORDS AND PHRASES. Ring, idempotent element, derivation, Peirce decomposition. 1980 AMS SUBJECT CLASSIFICATION CODES. 16A15, 16A70.

1. INTRODUCTION.

In [1], Martindale has asked the following question : When is a multiplicative mapping additive ? He answered his question for a multiplicative isomorphism of a ring R under the existence of a family of idempotent elements in R which satisfies some conditions.

Over the past few years, many results concerning derivations of rings have been obtained. In this note, we introduce the definition of a multiplicative derivation of a ring R to be a mapping d of R into R such that d(ab) = d(a)b + ad(b), for all a,b in R. As Martindale did, we raise the following question : When is a multiplicative derivation additive? Fortunately, we can give a full answer for this question using Martindale's conditions when assumed for a single fixed idempotent in R.

In the ring R, let e be an idempotent element so that $e \neq 0$, $e \neq 1$ (R need not have an identity). As in [2], the two-sided Peirce decomposition of R relative to the idempotent e takes the form R = eRe \oplus eR(1-e) \oplus (1-e)Re \oplus (1-e)R(1-e). We will formally set $e_1 = e$ and $e_2 = 1$ -e. So letting $R_{mn} = e_m Re_n$; m,n = 1,2, we may write R = $R_{11} \oplus R_{12} \oplus R_{21} \oplus R_{22}$. Moreover, an element of the subring R_{mn} will be denoted by x_{mn} .

From the definition of d we note that d(0) = d(00) = d(0)0 + 0d(0) = 0. Moreover, we have $d(e) = d(e^2) = d(e)e + ed(e)$. So we can express d(e) as $a_{11} + a_{12} + a_{21} + a_{22}$ and use the value of d(e) to get that $a_{11} = a_{22}$, that is, $a_{11} = 0 = a_{22}$. Consequently, we have $d(e) = a_{12} + a_{21}$.

Now let f be the inner derivation of R determined by the element $a_{12} - a_{21}$, that is $f(x) = [x, a_{12} - a_{21}]$ for all x in R. Therefore, $f(e) = [e, a_{12} - a_{21}] = a_{12} + a_{21}$. In the sequel, and without loss of generality, we can replace the multiplicative derivation d by the multiplicative derivation d - f, which we denote by D,that is, D = d - f. This yields D(e) = 0. This simplification is of great importance, for, as we will see, the subrings R_{mn} become invariant under the multiplicative derivation D.

2. A KEY LEMMA.

LEMMA 1. $D(R_{mn}) \subset R_{mn}$, m,n = 1,2.

PROOF. Let x_{11} be an arbitrary element of R_{11} . Then $D(x_{11}) = D(ex_{11}e)=eD(x_{11})e$ which is an element of R_{11} . For an element x_{12} in R_{12} , we have $D(x_{12}) = D(ex_{12}) = eD(x_{12}) = b_{11} + b_{12}$. But $0 = D(0) = D(x_{12}e) = D(x_{12})e = b_{11}$, hence $D(x_{12}) = b_{12}$ which belongs to R_{12} . In a similar fashion, for an element x_{21} in R_{21} , we have $D(x_{21})$ belongs to R_{21} . Now take an element x_{22} in R_{22} . Write $D(x_{22}) = c_{11}+c_{12}+c_{21}+c_{22}$. So, $0 = D(ex_{22}) = eD(x_{22}) = c_{11} + c_{12}$, whence $c_{11} = c_{12} = 0$. Likewise $c_{21} = 0$, and thus $D(x_{22}) = c_{22}$ which is an element of R_{22} . This proves the lemma. 3. CONDITIONS OF MARTINDALE.

In his note [1], Martindale has given the following conditions which are imposed on a ring R having a family of idempotent elements $\{e_i: i \in I\}$.

- (1) xR = 0 implies x = 0.
- (2) If $e_i Rx = 0$ for each i in I, then x = 0 (and hence Rx = 0 implies x = 0).
- (3) For each i in I, $e_i x e_i R(1-e_i) = 0$ implies $e_i x e_i = 0$.

In our note, we find it appropriate to simply dispense with conditions (1), (2) and (3) altogether and instead substitute the following conditions :

 $(M_1) xR = 0$ implies x = 0.

 (M_2) eRx = 0 implies x = 0 (and hence Rx = 0 implies x = 0).

 $(M_3) \exp(1-e) = 0$ implies exe = 0.

4. AUXILIARY LEMMAS.

LEMMA 2. For any x_{mm} in R_{mm} and any x_{pq} in R_{pq} with $p \neq q$, we have

$$D(x_{mm} + x_{pq}) = D(x_{mm}) + D(x_{pq}).$$

PROOF. Assume m = p = 1 and q = 2.

Consider the sum $D(x_{11}) + D(x_{12})$. Let t_{1n} be an element of R_{1n} . Using Lemm 1, we have $[D(x_{11}) + D(x_{12})]t_{1n} = D(x_{11})t_{1n} = D(x_{11}t_{1n}) - x_{11}D(t_{1n}) = D[(x_{11} + x_{12})t_{1n}] - x_{11}D(t_{1n}) = D(x_{11} + x_{12})t_{1n} + (x_{11} + x_{12})D(t_{1n}) - x_{11}D(t_{1n}) = D(x_{11} + x_{12})t_{1n}$. Thus,

 $[D(x_{11}) + D(x_{12}) - D(x_{11} + x_{12})]t_{1n} = 0.$

In the same fashion, for any t_{2n} in R_{2n} , we can get the following

 $[D(x_{11}) + D(x_{12}) - D(x_{11} + x_{12})]t_{2n} = 0.$

Combining these results, we have $[D(x_{11}) + D(x_{12}) - D(x_{11} + x_{12})]R = 0$. By condition (N_1) , we obtain

$$D(x_{11} + x_{12}) = D(x_{11}) + D(x_{12}).$$

In view of the symmetry resulting from condition (M_1) and the implication of condition (M_2) , we can find that the other three cases are easily shown in a similar fashion.

LEMMA 3. D is additive on R_{12} .

PROOF. Let x_{12} and y_{12} be two elements in the subring R_{12} , and consider the sum

 $D(x_{12}) + D(y_{12}).$

(A) For an element t_{1n} in R_{1n} , we have $[D(x_{12}) + D(y_{12})]t_{1n} = D(x_{12} + y_{12})t_{1n}$, since each side is zero by Lemma 1, so

$$[D(x_{12}) + D(y_{12}) - D(x_{12} + y_{12})]t_{1n} = 0.$$

(B) Consider an element t_{2n} in R_{2n} . We have $(x_{12} + y_{12})t_{2n} = (e + x_{12})(t_{2n} + y_{12}t_{2n})$ $(t_{2n} + y_{12}t_{2n})$. Thus, $D[(x_{12} + y_{12})t_{2n}] = D(e + x_{12})(t_{2n} + y_{12}t_{2n}) + (e + x_{12})D(t_{2n} + y_{12}t_{2n})$ $= (D(e) + D(x_{12}))(t_{2n} + y_{12}t_{2n}) + (e + x_{12})(D(t_{2n}) + D(y_{12}t_{2n})) = D(x_{12})t_{2n} + x_{12}D(t_{2n})$ $+ D(y_{12}t_{2n})$, by Lemmas 1 and 2. Thus, $D((x_{12} + y_{12})t_{2n}) = D(x_{12}t_{2n}) + D(y_{12}t_{2n})$. But $(D(x_{12}) + D(y_{12}))t_{2n} = D(x_{12})t_{2n} + D(y_{12})t_{2n} = D(x_{12}t_{2n}) + D(y_{12}t_{2n}) - (x_{12}+y_{12})D(t_{2n}) = D(x_{12} + y_{12})t_{2n}$. Hence,

 $[D(x_{12}) + D(y_{12}) - D(x_{12} + y_{12})]t_{2n} = 0.$

Consequently, from (A) and (B) we have

$$[D(x_{12}) + D(y_{12}) - D(x_{12} + y_{12})]R = 0.$$

By condition (M_1) , we have

$$D(x_{12} + y_{12}) = D(x_{12}) + D(y_{12}).$$

LEMMA 4. D is additive on R_{11} .

[D

PROOF. Let x_{11} and y_{11} be arbitrary elements in R_{11} . For an element t_{12} in R_{12} , we have $(D(x_{11}) + D(y_{11}))t_{12} = D(x_{11})t_{12} + D(y_{11})t_{12} = D(x_{11}t_{12}) + D(y_{11}t_{12}) - (x_{11} + y_{11})D(t_{12})$. But $x_{11}t_{12}$ and $y_{11}t_{12}$ are in R_{12} , and D is additive on R_{12} by Lemma 3, hence $(D(x_{11}) + D(y_{11}))t_{12} = D(x_{11}t_{12} + y_{11}t_{12}) - (x_{11} + y_{11})D(t_{12}) = D((x_{11}+y_{11})t_{12}) - (x_{11} + y_{11})D(t_{12}) = D((x_{11}+y_{11})t_{12}) - (x_{11} + y_{11})D(t_{12}) = D(x_{11} + y_{11})t_{12}$.

$$(x_{11}) + D(y_{11}) - D(x_{11} + y_{11})]t_{12} = 0.$$

Therefore,

$$[D(x_{11}) + D(y_{11}) - D(x_{11} + y_{11})]R_{12} = 0.$$

From Lemma 1, $D(x_{11}) + D(y_{11}) - D(x_{11} + y_{11})$ is an element in R_{11} , hence the above result with condition (M₃) give

$$D(x_{11} + y_{11}) = D(x_{11}) + D(y_{11}).$$

LEMMA 5. D is additive on $R_{11} + R_{12} = eR$.

PROOF. Consider the arbitrary elements x_{11} , y_{11} in R_{11} and x_{12} , y_{12} in R_{12} . So, Lemmas 2,3,4 give $D((x_{11} + x_{12}) + (y_{11} + y_{12})) = D((x_{11} + y_{11}) + (x_{12} + y_{12}))=D(x_{11} + y_{11}) + D(x_{12} + y_{12}) = D(x_{11}) + D(y_{11}) + D(x_{12}) + D(y_{12}) = (D(x_{11}) + D(x_{12})) + (D(y_{11}) + D(y_{12})) = D(x_{11} + x_{12}) + D(y_{11} + y_{12})$. Thus D is additive on $R_{11} + R_{12}$. This proves the desired result.

5. MAIN THEOREM.

THEOREM. Let R be a ring containing an idempotent e which satisfies conditions (M_1) , (M_2) and (M_3) . If d is any multiplicative derivation of R, then d is additive.

PROOF. As we mentioned before, and without loss of generality, we can replace d by D. Let x and y be any elements of R. Consider D(x) + D(y). Take an element t in eR = $R_{11} + R_{12}$. Thus, tx and ty are elements of eR. According to Lemma 5, we can obtain t(D(x) + D(y)) = tD(x) + tD(y) = D(tx) + D(ty) - D(t)(x + y) = D(tx + ty) - D(t(x + y))

+ tD(x + y). Thus, t(D(x) + D(y)) = tD(x + y). Since t is arbitrary in eR, we obtain eR(D(x) + D(y) - D(x + y)) = 0. By condition (M₂), we get

$$D(x + y) = D(x) + D(y),$$

which shows that the multiplicative derivation D is additive.

ACKNOWLEDGEMENT. The author is indebted to the referee for his helpful suggestions and valuable comments which helped in appearing the paper in its present shape.

REFERENCES

- MARTINDALE III, W.S. when are Multiplicative Mappings Additive ?, <u>Proc. Amer.</u>. <u>Math. Soc. 21</u> (1969), 695-698.
- 2. JACOBSON, N. Structure of Rings, Amer. Math. Soc. Collog. Publ. 37 (1964).