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ABSTRACT. Bounds are found for the distribution function of the sum of squares X2+y2 where X and

Y are arbitrary continuous random variables. The techniques employed, which utilize copulas and their

properties, show that the bounds are pointwise best-possible when X and Y are symmetric about 0 and

yield expressions which can be evaluated explicitly when X and Y have a common distribution function

which is concave on (0,oo). Similar results are obtained for the radial error (X2+y2) 1/2. The important

case where X and Y are normally distributed is discussed, and here best-possible bounds on the circular

probable error are also obtained.
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1. INTRODUCTION.
In a previous paper ], M. J. Frank and the authors used copulas and their properties to obtain best-

possible bounds for the distribution function of the sum X+Y of two random variables X and Y whose

individual distribution functions FX and Fy are fixed. Our a;m in this paper is to apply the techniques de-

veloped in [1] to obtain best-possible bounds for the distribution function of the sum of squares X2+y2

and for the so-called radial error (X2+y2) 1/2 (see Kotz and Johnson [2], p. 499) when the random vari-

ables X and Y are continuous. Specifically, we evaluate inf[Pr{X2+y2 < x}] and sup[Pr{X2+y2 < x}],

where the infimum and supremum are taken over all possible bivariate distribution functions of X and Y

having marginals FX and Fy. We further show that these bounds are pointwise best-possible when Fx and

Fy are symmetric about O, and that they are simple to evaluate under the further assumption that X and Y

have a common distribution function which is concave on (0,oo). We also obtain slmxlar restllts for the

radial error and consider the important special case when the margins are normal.
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2. PRELIMINARIES.
A (two-dimensional) copula is a mapping C from the unit square [0,1 ]2 onto the unit interval [0,1]

satisfying the conditions:

(i) C(a,0) C(0,a) =0 and C(a,1) C(1,a) a for all a in [0,1].

(ii) C(c,d) C(a,d) C(c,b) + C(a,b) _> 0 for all a,b,c,d in [0,1] such that a < c, b < d.

Alternatively, a copula is a bivariate distribution function whose support is contained in the unit square and

whose margins are uniform on [0,1].
We shall assume that the reader is familiar with the basic facts concerning copulas as given, e.g., in

Schweizer and Sklar [3] and reviewed briefly in 1]. Thus, if X and Y are random variables (r.v.’s) with

individual distribution functions (d.f.’s) Fx and Fy and joint d.f. Hx,Y, then there exists a copula Cx,Y
such that

Hx,y(U,V Cx,y(Fx(u),Fy(v)), (2.1)

for all u,v in R. Using (2.1), it follows that the d.f. FX+Y of the sum X+Y may be expressed in the form

OCx,y(FX,Fy), where for any copula C, oC is the binary operation on the space of (left-continuous) dis-

tribution functions defined by

Oc(F,G)(x ff dC(F(u),G(v)),
u+v < g

for any x in R. Also, for any copula C, C and PC are the binary operations defined by

:c(F,G)(x) sup u+v=x C(F(u),G(v)) (2.2)
and

Pc(F,G)(x) inf u+v=-x C(F(u),G(v)), (2.3)

respectively, where C(a,b) a + b C(a,b) is the dual copula of C.
LetW be the copula defined by

W(a,b) max(a + b- 1,0), (2.4)

so that W(a,b) min(a + b,1). Then, as shown by Moynihan, Schweizer and Sklar [4],

zw(F,G) _< oc(F,G < pw(F,G), (2.5)

for any d.f.’s F,G and any copula C. In particular,

:w(Fx,Fy) <_ FX+Y _< pw(Fx,Fy), (2.6)

for any r.v.’s X and Y. Furthermore, as shown in 1], the bounds in (2.5) are pointwise best-possible in

the sense that, for any d.f.’s F,G and any x in R,
(i) There exists a copula Ct, dependent only on the value of zw(F,G) at x, such that

Oct(F,G)(x) zw(F,G)(x) t, (2.7)

(ii) There exists a copula Cr, dependent only on the value r of pw(F,G)(x+), such that

OCr(F,G)(x+) pw(F,G)(x+) r. (2.8)
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Particular copulas C and C can be determined explicitly. For example, we may take

and

tmax(a + b- 1,t) (a,b)e [t,1]2,
Ct(a’b)

I,min(a,b), otherwise,

Imax(a + b r,0), (a,b) [0,r]2,
Cr(a’b)

I, min(a,b), otherwise.

(2.9)

(2.10)

Each of the copulas C and C assigns all its probability mass to a set of measure zero. Specifically, C

distributes mass uniformly on the line segment joining (0,0) to (t,t) and mass 1- uniformly on the line

segment joining (t,1) to (1,t); and correspondingly for Ca.. As a result, if C (or Cr) is the copula of X and

Y, then the bivariate distribution HX,Y is singular.

We shall also need the following simple lemmas.

LEMMA 1. If the d.f. F is concave on (0,oo) and if F(0) 0, then for any x in R,

and
xw(F,F)(x) maxl2F(x/2)- 1,0}

pw(F,F)(x) F(x).

PROOF. It is readily verified that F is subadditive (see Lemma 2.2.6 of [3]). Thus, for any u,v >

0, we have

F(u + v) _< F(u) + F(v) < 2F((u + v)/2),

with equality on the right when u v and equality on the left when u 0 or v 0. Consequently, for any

xinR,
sup u+v--x{ F(u) + F(v)} 2F(x/2)

and
inf u+v--x {F(u) + F(v) F(x),

from which, using (2.2), (2.3) and (2.4), the lemma follows.

Since the composition of two non-decreasing concave functions is concave, Lemma immediately

yields

LEMMA 2. If the d.f. G is concave on (0,o) and symmetric about 0, so that G(-x) G(x), and

if F is defined by
2G(,/- 1, x > 0,

F(x)
[0, x<0,

then F is a d.f. which is concave on (0,*,,), and

Imax(4G6ff-) 3,0), L>0,
Xw(F’F)(x)

[0, x.,
and

f2G()- 1, x>0,

w,)(x) ,
[0, x<0.

Note that the d.f. G in Lemma 2 is unimodal and that 0 is its mode (see Feller [5]).
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In the remainder of this paper we shall assume that all d.f.’s are continuous (recall that any concave

function is continuous). We further note that we use the term "random variable" in the statistical and not

the probabilistic sense: that is to say, a r.v. is a quantity whose values are described by a known or un-

known probability distribution function rather than a measurable function on a given probability space.

(For a detailed discussion of this point of view, see Menger [6].) Also, for any r.v. X, we shall denote

the d.f. of X either, as before, by FX or by df(X), whichever is more convenient.

3. THE BOUNDS.
We now turn our attention to d.f.’s for sums of squares of random variables, that is, to evaluating

inf[Pr{X2+y2 < x}] and sup[Pr{X’2+Y2 < x}], where the infimum and supremum are taken over all pos-
sible bivariate distribution functions ofX and Y having marginals FX and Fy. We first note that if Z is a

r.v. with d.f. FZ, then the d.f. of the r.v. Z2 is given by

FZ(.r-f FZ(-$ ), x_>O,

Fz’(X) Jo, x_<0.
(3.1)

Now let X and Y be r.v.’s whose individual d.f.’s Fx and Fy are specified but whose joint d.f., or

equ{valently whose copula, is not specified. Then as an imme,diate consequence of (2.6), we have

THEOREM 1. Let X and Y be continuous r.v.’s. Then for any x in R,

xw(Fx2,Fy2)(x < df(X2 + Y2)(x) < PwfFx2,Fy2)(x). (3.2)

From (2.7) and (2.8) it follows that, for any x in R, there exist copulas Ct and Cr for r.v.’s X2 and
y2 for which equality on either side of (3.1) is attained. Consequently, in order to show that the bounds

in (3.2) are best-possible, we have to show that, for any such C or Cr, we can determine a copula CX,y
connecting r.v.’s X and Y such that Cx2,y2 C or Cx2,y2 Cr, as the case may be. Letting C CX,Y,
C* Cx2,y2, F FX and G Fy, it follows from (2.1) and (3.1) that C and C* are related via

C*(F(/- )-F(-/- ),G(/ )-G(-’]- ))=
CfF(xr-d ),G(/ ))- C(F(-4-d ),G(/- )) (3.3)

-C(F(]- ),G(-/ ))+ C(F(-/- ),G(-/ )),

for all u,v > 0.

Thus our problem would be solved if, for any given copula C*, we coul( always find a copula C

such that (3.3) holds for all d.f.’s F and G and all u,v >_ 0. The following lemmas show that this is decid-

edly not the case.

LEMMA 3. If (3.3) holds for all d.f.’s F and G satisfying F(0) G(0) 0 and all u,v 0, then

C*= C.
PROOF. If F(0) G(0) 0, then F(- /-) G(- ,r) 0 for all u,v _> 0, whence (3.3) reduces to

C*(F(/),G(/)) C(F([),G(/)). Now for any a,b [0,1]2 we may further specify F, G, u, v so that

F(-) a and G(/) b; thus C*= C.
LEMMA 4. Let C* and C be copulas. Then (3.3) holds for all d.f.’s F and G and all u,v > 0 if and

only if C*(a,b) C(a,b) ab for all (a,b) [0,1]2.
PROOF. By Lemma 3, we have C*= C. Now let G(0) 0, let F be arbitrary, and let a F(/-)

F(- /-), b F(- /-), and c G(/). Then (3.3) becomes

C(a + b,c) C(a,c) + C(b,c) for a,b > 0, a + b < 1, 0 _< c < 1. (3.4)



BOUNDS FOR DISTRIBUTION FUNCTIONS 565

Letting fc(x) C(x,c), we have that the function fc satisfies Cauchy’s equation on the restricted domain

{(a,b)la,b > 0,a + b < }, whence (see Dar6czy and Losonczi [7]) it follows that fc(X) xfc(1) xc, and

this completes the proof.
Lemmas 3 and 4 show that in order to have a meaningful problem it is necessary to restrict the class

of d.f.’s in (3.3). We shall consider the important special case in which the d.f.’s F and G are symmetric

about 0, so that F(4-fi) F(- 4-fi) and G() G(- /). In this case, letting a F(d-fi) and b

G(4-) in (3.3) leads to the problem: Given a copula C*, find a copula C such that for all (a,b) in [1/2,1]2,

C*(2a- 1,2b- 1) C(a,b) C(1 a,b)- C(a,1 b) + C(1 a,1 b). (3.5)

But this is easily done (basically because the points (a,b), (1 a,b), (a,1 b) and (1 a,1 b) belong to

different quarters of the unit square). For example, if we assign equal mass to the rectangles [a,1] x [b,1]

and [0,1 a] x [0,1 b] and no mass to the squares [0,1/2] x [1/2,1] and [1/2,1] x [0,1/2], i.e., if we as-

sume that

C(1 a,1 b) a- b + C(a,b),

C(1 a,b) a rain(1 a,b), (3.6)

C(a,1 b) b rain(a,1 b),

,then substituting into (3.5) yields

C(a,b) ={ + C*(2a- 1,2b- 1)}, for all (a,b) [1/2,1]2,

whence using (3.6), we have

1/2{ + C(2a 1,2b 1)}, (a,b) [1/2,112,
C(a,b) 1/2{2a + 2b- C*(1 2a,1 2b)}, (a,b) [0,1/2]2, (3.7)

/
[. min(a,b), otherwise.

A tedious but straightforward computation shows that C is indeed a copula. Thus we have proved:
THEOREM 5. Let X and Y be random variables whose distribution functions are continuous and

symmetric about 0. Let C* be any given copula. Then there exists a copula C, e.g., the copula given by
(3.7), such that if CX,Y C, then Cx2,y2 C*.

One can restate the preceding result in the following manner: Let F,and G be continuous one-di-

mensional d.f.’s which are symmetric about 0, and let X and Y be r.v.’s with df(X) F and df(Y) G.
Then, for any specified two-dimensional d.f. H* whose margins are df(X2) and df(y2), there exists a

two-dimensional d.f. H with margins F and G such that the joint d.f. of X2 and y2 is H* whenever the

joint d.f. of X and Y is H.
The next result is an,immediate consequence of (2.7) and (2.8) and Theorem 5.

THEOREM 6. Under the hypotheses of Theorem 5, the bounds in Theorem are pointwise best-

possible, that is: for any x in R,
(i) There exists a copula ct,y, dependent only on the value of XW(Fx2,Fy2) at x, such that

df(X2+y2)(x) 1;w(Fx2,Fy2)(x t,

(ii) There exists a copula c,ry, dependent only on the value r of pW(Fx2,Fy2) at x, such that

df(X2+y’2)(x) Pw(Fx2,Fy2)(x) r.
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Since the d.f.’s Fx and Fy in Theorem 6 arc symmetric, we have

2Fx(Tf 1, x _> O,

Fx2(X) 0, x < 0,

and similarly for Fy2(X). Thus an application ofLemma and Lemma 2 immediately yields

THEOREM 7. If the r.v’s X and Y are identically distributed and if their common d.f. G is sym-

metric about 0 and concave on (0,0-), then for all x > 0,

max{4G( 3,0} < df(X2 + Y2)(x) < 2G(’4- 1. (3.8)

These bounds are explicit, universal and pointwise best-possible.
As an immediate corollary to Theorem 7, we have best-possible bounds on the radial error

(X2+y2)1/2. Since Pr{ (X2+y2)l/2 < x Pr{ (X2+y2) < x2}, we need only replace x by x2 to obtain

COROLLARY 8. Let X and Y be identically distributed r.v.’s whose common d.f. G is symmetric
about 0 and concave on (0,oo). Then for all x_>0,

max{4G(x/] 3,0} < df{(X2 + y2)l/2}(x) < 2G(x)- 1. (3.9)

We conclude this section with several remarks.

1. The copula C in (3.7) is not the only solution of (3.5). For example, if in (3.6) we set

C(1 a,b) b- C(a,b),
and

C(a,1 b) a- C(a,b),

i.e., if we assign equal mass to each of the four rectangles [a,1] x [b,1], [0,l-a] x [0,l-b], [a,1] x

[0,l-b], and [0,1 a] x [b,1], then we find that

1/4{ 2a + 2b + C*(2a 1,2b 1) }, (a,b) 1/2,112,

1/4{2a+2b-1-Ci(1-2a,2b-1)}, (a,b)[0,1/2)x[1/2,1],
C(a,b) (3.10)

|1/4tEa + 2b- 1-C (2a- 1,1- 2b)}, (a,b)e [1/2,1]x[0,1/2),
/-

L1/4{Ea + 2b- + C*(1 2a,1 2b)}, (a,b) [0,1/2)2.
This choice is interesting because any two r.v.’s whose copula is given by (3.10) are uncorrelated in the
sense of Spearman’s p, Kendall’s ,, Blomqvist’s medial correlation coefficient, and Pearson’s r (provided

the requisite first and second moments exist). The proofs of these facts are straightforward calculations

using the expressions given in [8] and [9] for these measures.

2. If C is a copula an,d is C* is defined via (3.5) for (a,b) in [1/2,1]2, then C* is also a copula.
Letting 0t 2a- and J3 2b- 1, this fact can be expressed in the following more pleasing form:

THEOREM 9. If C is a copula and C* is defined by

C*(ot,)) C((1 + 00/2,(1 + 13)/2) C((1 oc)/2,(1 + 13)/2)
C((1 + o0/2,(1 1)/2) + C((1 (x)/2,(1 13)/2)

for all (ot,) in [0,1 ]2, then C* is a copula.
Note that C*((x,) is the mass that C assigns to the rectangle [(1 + o0/2,(1 + )/2] x

[(1 + o0/2,(1 + )/2] which is centered at the point (1/2,1/2).
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3. Since the copula of any pair of r.v.’s X and Y is invariant under strictly increasing transforma-

tions f and g ofX and Y, respectively, we have

Cx2,y2 Clxl,ly Cf(lXl),g(iYl).

4. For completeness sake we note that if the r.v.’s X and Y are non-negative, then in view of

Lemma 3, the problem of showing that the bounds in (3.2) are pointwise best-possible is (trivially) solved

by choosing CX,Y C and Cx,y Cr, respectively.

4. AN EXAMPLE.
Suppose X and Y are normally distributed with mean 0 and variance 2. If we let denote the dis-

tribution function of the standard normal, then since l(x/o) clearly satisfies the hypotheses of Corollary 8,

we immediately have

max{4CIx/o/ )-3,0} < df[(X2 + y2)I/2}(x)< 2@(x/) I.

These bounds are graphed in Figure 1, along with the d.f. P(x) for the radial error from three other

bivariate distributions which have N(0,2) marginals. The two labelled r 0 and r + are bivariate

normals with the indicated correlation coefficient, for which P(x) -exp(-x2/2c:r,] and P(x)

2(x// )- 1, respectively. The third is Vaswani’s bivariate normal 10], for which the copula is

C(a,b) from (3.7) with C*(a,b) W(a,b) from (2.4).

a. 9pper bound
b. r=+l
c. r=0
d. Vaswani’s
e. lower bound

2

Figure I. Distribution functions for radial error and the bounds in the normal case.

In this example we can compute explicit bounds for the circular probable error (C.E.P.), the two-

dimensional analog of the probable error of a single random variable, which is defined as the radius of the

mean-centered circle encompassing 50% of the probability mass, or the median of the distribution of
(X2+y2)1/2. The bounds are xL and xU, where 2(XL/O)- 1/2 and max{4cl>(xu// 3,0} 1/2,

so that
xL 611(3/4) 0.674496,
xo / O-1(7/8) 1.62684.
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As a point of comparison, the C.E.P. for independent N(0,o2) random variables is oq-n2 1.17741o.

As a consequence of Theorems 5 and 6, we can construct a bivariate distribution with normal

marginals which has minimum (or maximum) C.E.P. We construct a copula for such a distribution using

(3.7) where C* is taken to be Cr from (2.10) with r 1/2; that is,

max(a + b 1/2, 1/4), (a,b)e 1/4,1/2)2,
C(a,b) max(a + b 3/4, 1/2), (a,b) 1/2,3/4]2,

tmin(a,b), otherwise.

When this copula is endowed with N(0,o2) margins, we obtain the bivariate distribution function

’max{O(rdts) + tl)(y/ts) 1/2}, (x,y) [o’O-1(1/4),0)2,

Hx,y(x,y) ’)max{O(x/) + tl;}(y/t) 3/4}, (x,y) [0,o’O-(3/4)]2,
tmin (x/(s), (y/) }, otherwise.

This distribution is singular, with half the probability mass concentrated on segments of the line x y for

x < crl(1/4) and x > oxIl(3/4), and half the mass on the two branches of the curve F:l(x/o)+(y/o)-
li 1/4. But F lies entirely within the origin-centered circle of radius oxlr-l(3/4) and the line segments lie

outside this circle; thus this distribution attains minimum C.E.P.
We note here that there is the following probabilistic interpretation for this distribution: Let T be a

uniform (0,1) random variable, and set

X otl)-I (T),

O’(]) 1(3/4 T), Te [1/4,1/2),

Y ’o-1(5/4 T), T 1/2,3/4],
/
k.X, otherwise.

Then (X,Y) has the bivariate d.f. Hx,Y given above.

To construct a bivariate distribution with maximum C.E.P., we proceed in a similar fashion begin-
ning with C from (2.9) with 1/2. This yields the d.f.

Hx,(x,y)

max{(x/o) + (y/o) 1, 3/4 }, x,y > (-1(3/4),

max O(x/o) + (y/o) 1/4, 0}, x,y < {1)-1(1/4),

rain (x/l), ll)(y/O) }, otherwise.

It can be shown that this distribution places exactly half the probability mass within the circle centered at

the origin with radius, {I)-1(7/8), so that this distribution has maximum C.E.P.

5. EXTENSIONS.
Our results extend naturally to n dimensions and to arbitrary strictly increasing functions on [0,.o).

For example, if we replace the sum of squares in two dimensions by the sum of pth powers in n dimen-
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sions, then, for x > 0, the methods employed in Theorem 7 (with the r.v.’s X and Y replaced by

X 1,’",Xn) give,

max{2nG([x/n]l/P)- (2n- 1),0} < df(IXllP + ..-+ IXnlP)(x) < 2G(xI/p) 1.

For the analog of the radial error, namely the lp norm (IX IIp + + IXnlP) l/p in n dimensions,

Corollary 8 yields

max{2nG(x/nl/p) (2n- 1),0} < df{(IX11p + + IXnlP)I/p}(x) < 2G(x)- 1.

It is worth noting that the upper bound 2G(x) is independent of both dimension and norm: this is a

consequence of the idempotency of PW exhibited in Lemma 1.
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