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ABSTRACT. There are some papers, such as [1], [2] and [3], in which some properties on

isomorphism of closed subspace lattices of Hilbert spaces were studied. In this short paper we will

point out that the hyper-reflexivity of closed subspace lattice is invariant under isomorphism of

(gl) on (H2). We also proved that if T is in L(H) such that 0 r(T) and 4 is a hyper-reflexive

subspace lattice, then T(4)tO {H} is hyper-reflexive where T is a homomorphism induced by T.
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1. INTRODUCTION.
Let H be a complex Hilbert space, L(H) denotes the set of all bounded linear operators on H

and let f(H) be the set of all closed subspaces of H. For any subset A of L(H) and any family

4 C (H), let .A denote the lattice of closed subspaces invariant for A (or the lattice of invariant

projections for A) and let Alg 4 be the set of all operators invariant "for 4. 4 is said to be reflexiv._..__._e

if Lat Alg 4 4. A subalgebra A of L(H) is said to be reflexive if A Alg Lat A.
Let A be a reflexive algebra and let T L(H). It is easy to see that

dist (T,A) > sup { IIP _1. TP I1" P Lt }.

A is called to be hyper-reflexive (See [4]) if there exists a constant K > 0 such that for any

T L(H)

dist (T,A) < K sup { P _1. TP P Lat A}.

For any subspace lattice 4 _C f(H), if 4 is reflexive and Alg 4 is hyper-reflexive, then 4 is said to be

hyper-reflexive. Let be a lattice isomorphism of (H1) onto (g2) (i.e., a bijection with the
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property that M N iff (M)= (N)). It was proved in [1] and [2] that 9: is reflexive if and only
if q,(9:) is reflexive. For an operator A 6- L(H), A can give rise to a map A" (H)- (H) given by

A(M) AM, where ’-’ denotes norm closure. In the paper [3] the author proved that if the

approximate point spectrum r(A) of A does not contain 0 and 9: is reflexive, then A(9:)O {H} is

also reflexive. Here we prove the following theorem:

LEMMA 1. Let H and H2 be two complex Hilbert spaces, and let be a lattice isomorphism

of (H1) onto (H2). Then a subspace lattice 9: of (H1)is hyper-reflexive if and only if (9:)is
hyper-reflexive.

THEOREM 2. Let H be a complex Hilbert space, A 6_ L(H) and 0 r(A). If the subspace
lattice 9: of (H)is hyper-reflexive, then so is

2. THE PROOF OF THE THEOREMS.
Lemma 1 may be known, we give a proof by the following theorem:

THEOREM A. (t4l) Let .4. C. L(H) be a a-weakly closed unital subalgebra of L(H). Then A is

hyper-reflexive iff every element f 6- Jt _1_ has a representation

]=
n=l

where A+/- ={f:f is a a-weakly continuous linear functional on L(H)and f(A)--{0}}, each fnis

an elementary functional in A and fn < oo.
n=l

REMARK. A a-weakly continuous functional f on L(H) is said to be elementary if there exist

x, y 6 n suc that f(T) (Tx, y) for any T 6- L(H). We write f (x (R) y).
Let S be a conjugate linear continuous map from H1, into H2. It can be defined uniquely the

adjoint S* of S by the formula

(s**, v) (sv, ) (, sv). (2.1)

It is easy to check that (S*)* S, and (S-1)* (S*)-1 when $ has continuous inverse.

PROOF OF LEMMA 1. It is sufficient to prove the necessity. First $(9:) is reflexive by the

reflexivity of 9:. If dim H < oo, it is easy to prove that Alg (9:) is hyper-reflexive ([51). Now

suppose that dim H oo. Then there exists a bicontinuous linear or .conjugate linear bijection

S" H -- H2 such that S i.e., (M) SM for every M 6- (H1) (see [1]).
We may suppose that S is conjugate hnear. For any f q Alg (9:)) _L’ define g(A)= f(SAS-1),
then g q (Alg 9:) +/- since Alg (9:)= S( Alg 9:)5’-1.
By theorem A, there exist zn, Yn 6_ H such that (xn (R) Yn) 6- Alg 9:) _i_’

g Z (:r. (R) w)
n=l

, y, <
n--1

For any T 6- L(H2)
f(T) g(S-1TS)= (S-1TSxn, Yn)

n=l



HYPER-REFLEXIVITY OF CLOSED SUBSPACE LATTICES 449

Let un Sxn, vn (S*)-1Yn, then

, ((S-1)*yn, TS.rn)
n=l, (TSxn, (S*)-lyn).
n=l

f E (un, (R)

and (un (R) Vn) e (Alg ()) .1., , o < .
by n=l

And therefore Alg (*5) is hyperreflexive

Theorem A. The proof is complete.
A PROOF OF THEOREM 2. Since 0 ’(A), R(A), the range of A, is a closed subspace of H.

Let g H(A), then CA defines a lattice isomorphism from (H) onto (H1). From Lemma we

have that Algg CA()= {T E L(H1): A()C_ Lat(T)is hyper-reflexive. By the definition of

hyper-reflexlvlty, there exmts K > 0 such that for any T E L(H1)

dist (T, AlgHICA(ff))
_< K sup {11 (IH1 PeA (M))TA(M) M }

where PC (M) denotes the orthogonal projection from H onto CA(M).

(A(q)) and S . L(H), we define an operator T . L(H) by formula

For any T( AIgH1

" (x(R)y)= Tx + Sy, x(R)y H H (R) H?
Then T e Alg (A(q)O {H}) since T AlgHIA(). Denote by E the orthogonal projection from

H onto H1, then

dist (S, Alg (A(*5) 0 {H}))

and so

_< IIESlH,-TII + IIE-LSEll

< ESE- T + sup {P A_ SP I1" M if}CA(M) CA(M)
dist (S, Alg (CA(if)t.J {H)

< dist (ESE, Alg HIA(if)) + sup { P 1A(M)SPA(M)I1" M e if}

< (g + 1) sup {[1P SPy [[" g e A(3:) U {g}}

which implies the hyper-reflexivity of AlgA(q U (H}. Together with the reflexivity of CA(if)t3 {H}
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(see [3]), we obtain 4A(nY)U {H} is hyper-reflexivity.
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