FUNCTIONS STARLIKE WITH RESPECT TO OTHER POINTS

S. ABDUL HALIM

Dept. of Mathematics University of Malaya 59100 Kuala Lumpur Malaysia

(Received September 26, 1990 and in revised form March 5, 1991)

ABSTRACT. In [7], Sakaguchi introduce the class of functions starlike with respect to symmetric points. We extend this class. For $0 \leq \beta < 1$, let $S^*(\beta)$ be the class of normalised analytic functions f defined in the open unit disc D such that Re $zf'(z)/(f(z)-f(-z)) > \beta$, for some $z \in D$. In this paper, we introduce 2 other similar classes $S^*_{c}(\beta)$, $S^*_{sc}(\beta)$ as well as give sharp results for the real part of some function for $f \in S^*_{s}(\beta)$, $S^*_{c}(\beta)$ and $S^*_{sc}(\beta)$. The behaviour of certain integral operators are also considered.

KEY WORDS AND PHRASES. Starlike functions of order β, functions starlike with respect to symmetrical points, close-to-convex, integral operators. AMS Subject Classification (1985 Revision): Primary 30 C 45.

1. INTRODUCTION.

Let S be the class of analytic functions f, univalent in the unit disc D = $\{z : |z| < 1\}$, with

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$
 (1.1)

For $0 \leq \beta < 1$, denote by $S^*(\beta)$, the class of starlike functions of order β . Then $f \in S^*(\beta)$ if, and only if, for $z \in D$,

Re
$$\left(\frac{zf'(z)}{f(z)}\right) > \beta$$
.

In [7], Sakaguchi introduced the class S_s^* of analytic functions f, normalised by (1.1) which are starlike with respect to symmetrical points. We begin by defining the class S_s^* , which is contained in K, the class of close-to-convex functions. DEFINITION 1.

A function $f \in S^*$ if, and only if, for $z \in D$,

Re
$$\left(\frac{zf'(z)}{f(z)-f(-z)}\right) > 0.$$

We now extend this definition as follows:

DEFINITION 2.

A function f with normalisations (1.1) is said to be starlike of order β , with respect to symmetric points if, and only if, for z ϵ D and $0 \leq \beta < 1$,

Re
$$\left(\frac{2zf'(z)}{f(z)-f(-z)}\right) > \beta$$
.

We denote this class by $S_{s}^{*}(\beta)$ and note that $S_{s}^{*} = S_{s}^{*}(0)$.

In the same manner, we define the following new classes of close-to-convex functions, which are generalisations of the classes in El-Ashwah and Thomas [2]. DEFINITION 3.

A function f normalised by (1.1) is said to be starlike of order β , with respect to conjugate points if, and only if, for $z \in D$ and $0 \leq \beta < 1$,

Re
$$\left(\frac{2zf'(z)}{f(z)+f(\overline{z})}\right) > \beta$$
.

We denote this class by $S^*_{c}(\beta)$.

DEFINITION 4.

A function f normalised by (1.1) is said to be starlike of order β , with respect to symmetric conjugate points if, and only if, for $z \in D$ and $0 \leq \beta < 1$,

Re
$$\left(\frac{2zf'(z)}{f(z)-f(-\overline{z})}\right) > \beta$$
.

We denote this class by $S_{sc}^{*}(\beta)$.

REMARK.

The class S_s^* has been studied by several authors, (eg. Wu [9] and Stankiewicz [8]). For $f \in S_s^*(\beta)$, Owa et al [4] proved that for $\frac{1}{4} \leq \beta < \frac{1}{2}$,

Re
$$\left(\frac{f(z)-f(-z)}{z}\right) > \frac{2}{3-4\beta}$$
, $z \in D$.

2. RESULTS.

THEOREM 1.

Let $f \in S_{s}^{*}(\beta)$, then for $z = re^{i\theta} \in D$,

$$\operatorname{Re}\left(\frac{f(z)-f(-z)}{z}\right)^{1/(1-\beta)} \geq \frac{2^{1/(1-\beta)}}{1+r^2} > 2^{\beta/(1-\beta)}$$

The result is sharp for f_0 given by

$$f_0(z) - f_0(-z) = 2z(1+z^2)^{\beta-1}$$
.

To prove Theorem 1, we first require the following lemma. LEMMA 1.

Let $g \in S^*(\beta)$ and be odd. Then for $z = re^{i\theta} \in D$,

Re
$$\left(\frac{g(z)}{z}\right)^{1/(1-\beta)} \ge \frac{1}{1+r^2}$$
.

PROOF OF LEMMA.

Pinchuk [5] showed that if $F \in S^{*}(\beta)$, then for $z = re^{i\theta} \in D$,

$$\left| \left(\frac{z}{F(z)} \right)^{1/2(1-\beta)} - 1 \right| \leq r.$$
(2.1)

Since g is odd, we may write $[g(z)]^2 = F(z^2)$, so that (2.1) gives

$$\left| \left(\frac{z}{g(z)} \right)^{1/(1-\beta)} - 1 \right| \leq r^2,$$

where on squaring both sides, gives

$$\left(\frac{r}{\lfloor g(z) \rfloor}\right)^{2/(1-\beta)} - 2 \operatorname{Re}\left[\left(\frac{z}{g(z)}\right)^{1/(1-\beta)}\right] + 1 \leq r^{\frac{1}{4}}.$$

Thus

$$2\operatorname{Re}\left[\left[\frac{g(z)}{z}\right]^{1/(1-\beta)}\right] \ge (1-r^{4})\left[\frac{|g(z)|}{r}\right]^{2/(1-\beta)} + 1$$
$$\ge \frac{1-r^{4}}{(1+r^{2})^{2}} + 1,$$

where we have used the inequality [6]

$$|g(z)| \ge \frac{r}{(1+r^2)^{1-\beta}},$$

for odd starlike functions of order β .

The Lemma now follows at once.

PROOF OF THEOREM 1.

Since $f \in S^{*}(\beta)$, it follows that we may write

$$g(z) = \frac{f(z)-f(-z)}{2}$$
,

for g an odd starlike function of order β . An application of Lemma 1 proves the Theorem.

Results analogous to Theorem 1 can also be found for the classes $S_c^{*}(\beta)$ and $S_c^{*}(\beta)$. THEOREM 2.

Let $f \in S^{*}(\beta)$. Then for $z = re^{i\theta} \in D$,

$$\operatorname{Re}\left(\frac{f(z)+\overline{f(z)}}{z}\right)^{1/2(1-\beta)} \geq \frac{(\sqrt{2})^{1/(1-\beta)}}{1+r} \geq 2^{(2\beta-1)/2(1-\beta)}.$$

The result is sharp for $f(z) + \overline{f(\overline{z})} = 2z(1+z)^{2(\beta-1)}$ PROOF

Since $f \in S^{*}_{\alpha}(\beta)$, it is easy to see that, if

$$F(z) = \frac{f(z) + f(\overline{z})}{2}$$

then F ϵ S*(β). Using the same techniques as in the proof of Lemma 1, it follows from (2.1) that

Re
$$\left(\frac{F(z)}{z}\right)^{1/2(1-\beta)} \ge \frac{1}{1+r}$$
.

The result now follows immediately.

Similarly, we have the following result, which we state without proof. THEOREM 3.

Let f $S_{sc}^{*}(\beta)$. Then for $z = re^{i\theta} \in D$,

$$\operatorname{Re}\left(\frac{f(z)-f(-\overline{z})}{z}\right)^{1/2(1-\beta)} \geq \frac{2^{1/2(1-\beta)}}{1+r} > 2^{(2\beta-1)/2(1-\beta)}.$$

The result is sharp for $f(z) - \overline{f(-\overline{z})} = 2z(1+z)^{2(\beta-1)}$

We now consider the results of some integral operators. In [1] Das and Singh, obtained analogous results of the Libera integral operator. They proved that for $f \in S_s^*(0)$, the function h given by

$$h(z) = \frac{1}{2} \int_{0}^{z} t^{-1} [f(t) - f(-t)] dt$$

also belongs to $S_{s}^{*}(0)$.

The result below generalises that of Das and Singh. THEOREM 4.

Let $f \in S^*(\beta)$. Then the function H defined by

$$H(z) = \frac{a+1}{2z^{a}} \int_{0}^{z} t^{a-1} [f(t)-f(-t)] dt, \qquad (2.2)$$

also belongs to $S_{S}^{*}(\beta)$ for $z \in D$ and $a + \beta > 0$.

We first require the following Lemma due to Miller and Mocanu [5]. LEMMA 2.

Let M and N be analytic in D with M(0) = N(0) = 0 and let β be any real number. If N(z) maps D onto a (possibly many sheeted) region which is starlike with respect to the origin, then for $z \in D$,

$$\operatorname{Re} \frac{M'(z)}{N'(z)} > \beta \implies \operatorname{Re} \frac{M(z)}{N(z)} > \beta,$$

and

Re
$$\frac{M'(z)}{N'(z)} < \beta \implies \operatorname{Re} \frac{M(z)}{N(z)} < \beta.$$

PROOF OF THEOREM 4.

(2.2) gives, $\frac{2zH'(z)}{H(z)-H(-z)} = \frac{z^{a}[f(z)-f(-z)]-a \int_{0}^{z} t^{a-1}[f(t)-f(-t)]dt}{\int_{0}^{z} t^{a-1}[f(t)-f(-t)]dt}$ $= \frac{M(z)}{N(z)}, \text{ say.}$

Note that M(0) = N(0) = 0 and for $f \in S_{s}^{*}(\beta)$,

454

$$\operatorname{Re}\left(1 + \frac{zN''(z)}{N'(z)}\right) = a + \operatorname{Re}\left(\frac{z[f'(z)+f'(-z)]}{f(z)-f(-z)}\right)$$

> a + b.

Thus N(z) is starlike if, and only if $a > -\beta$. Furthermore, since

$$\operatorname{Re} \frac{M'(z)}{N'(z)} = \operatorname{Re} \left(\frac{z[f'(z)+f'(-z)]}{f(z)-f(-z)} \right) > \beta.$$

Lemma 2 shows that H ε S^{*}(β).

Finally, we give the following analogous results for the classes $S_c^{*}(\beta)$ and $S_c^{*}(\beta)$. THEOREM 5.

Let $f \in S^*_{\mathcal{C}}(\beta)$. Then H defined by

$$H(z) = \frac{a+1}{2z^{a}} \int_{0}^{z} t^{a-1} [f(t) + \overline{f(t)}] dt, \qquad (2.3)$$

also belongs to $S^{*}(\beta)$ for $z \in D$ and $a + \beta > 0$.

PROOF.

Since f $\epsilon S_c^{*}(\beta)$, (2.3) gives

$$\int_{0}^{\overline{z}} t^{a-1} [f(t) + \overline{f(\overline{t})}] dt = 2 \int_{0}^{\overline{z}} t^{a-1} \left(t + \sum_{n=2}^{\infty} \operatorname{Re} a_{n} t^{n} \right) dt$$
$$= 2 \int_{0}^{\overline{z}} t^{a-1} \left(t + \sum_{n=2}^{\infty} \operatorname{Re} a_{n} t^{n} \right) dt$$
$$= \int_{0}^{\overline{z}} t^{a-1} [f(t) + \overline{f(\overline{t})}] dt.$$

Thus

$$\frac{2z H'(z)}{H(z) + H(\overline{z})} = \frac{z^{a}[f(z) + f(\overline{z})] - a \int_{0}^{z} t^{a-1}[f(t) + \overline{f(\overline{t})}]dt}{\int_{0}^{z} t^{a-1}[f(t) + \overline{f(\overline{t})}]dt}$$
$$= \frac{M(z)}{N(z)},$$

where M(0) = N(0) = 0 and N ε S[#] for a + $\beta > 0$. On using Lemma 2 it follows that H ε S[#](β).

THEOREM 6.

Let $f \in S^{*}_{sc}(\beta)$. Then H defined by

$$H(z) = \frac{a+1}{2z^{a}} \int_{0}^{z} t^{a-1} [f(t) - \overline{f(-t)}] dt, \qquad (2.4)$$

also belongs to $S_{sc}^{*}(\beta)$ for $z \in D$ and $a + \beta > 0$.

PROOF.

For $f \in S_{sc}^{*}(\beta)$, (2.4) gives

$$\overline{H(-\overline{z})} = \frac{a+1}{(-z)^{a}} \int_{0}^{-\overline{z}} t^{a-1} [f(t) - \overline{f(-\overline{t})}] dt$$
$$= \frac{a+1}{(-z)^{a}} \left\{ \frac{2(-z)^{a+1}}{a+1} + \sum_{n=2}^{\infty} \frac{(-z)^{n+a}}{n+a} (\overline{a_{n}} + (-1)^{n+1} a_{n}) \right\}$$
$$= \frac{-(a+1)}{z^{a}} \int_{0}^{z} t^{a-1} [f(t) - \overline{f(-\overline{t})}] dt.$$

As before, writing

$$\frac{2zH'(z)}{H(z) - H(-\overline{z})} = \frac{M(z)}{N(z)},$$

one can show that N & S* and hence using Lemma 2 the result follows.

REFERENCES

- R.N.Das and P.Singh, On subclasses of schlicht mapping, <u>Indian J. Pure Appl.</u> <u>Math., 8</u>, (1977), 864-872.
- R.M.El-Ashwah and D.K.Thomas, Some subclasses of close-to-convex functions, J. Ramanujan Math. Soc., 2(1), (1987), 85-100.
- 3. S.S.Miller and P.T.Mocanu, Second order differential inequalities in the complex plane, <u>J. Math. Ana. Appl., 65</u>, (1978), 289-304.
- 4. S.Owa, Z.Wu and F.Ren, A note on certain subclass of Sakaguchi functions, Bull. de la Royale de Liege, 57(3), (1988), 143-150.
- B.Pinchuk, On starlike and convex functions of order β, <u>Duke Math. Journal, 35</u>, (1968), 721-734.
- M.S.Robertson, On the theory of univalent functions, <u>Ann. Math., 37</u>, (1936), 374-408.
- K.Sakaguchi, On a certain univalent mapping, <u>J. Math. Soc. Japan, 11</u>, (1959), 72-75.
- J.Stankiewicz, Some remarks on functions starlike w.r.t. symmetric points, <u>Ann. Univ. Marie Curie Sklodowska, 19(7)</u>, (1965), 53-59.
- Z.Wu, On classes of Sakaguchi functions and Hadamard products, <u>Sci. Sinica Ser</u>. <u>A, 30</u>, (1987), 128-135.