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ABSTRACT. Associated with any irrational number c > and the function g(n) [an + ]] is an

array {s(i,j)} of positive integers defined inductively as follows: s(1, 1) 1, s(1,j) g(s(1,j 1))

for all j > 2, s(i, 1) the least positive integer not among s(h,j) for h < i- for > 2, and

s(i,j) g(s(i,j- 1)) for j > 2. This work considers algebraic integers c of degree > 3 for which

the rows of the array s(i,j) partition the set of positive integers. Such an array is called a Stolarsky

array. A typical result is the following (Corollary 2)" if c is the positive root of xk xk- z

for k > 3, then s(i,j) is a Stolarsky array.

KEY WORDS AND PHRASES. Stolarsky array, linear recurrence sequence, nearly arithmetic se-

quence, nearly geometric sequence.
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1. INTRODUCTION.

It is possible to partition the set Z+ of positive integers as an infinite set of sequences all obeying

a common linear recurrence relation. Perhaps the first such array was introduced in 1977 by Stolarsky

[1]. The first row of Stolarsky’s array is the sequence of Fibonacci numbers, 1, 2, 3,5, 8,13,... as seen

in Table 1. This row and all subsequent rows obey the recurrence s. s,i- + s.i-2 for all j > 3.

Explicitly, each row after the first begins with the least positive integer not in any previous row,

and all terms following the first term of a row are then given by the simple nonlinear recurrence

s [as_l + ]; that is, the integer nearest cs_l, where c is the positive root of the characteristic

polynomial x x of the linear recurrence s s_l + s_.
The purpose of this paper is to determine other linear recurrence relations, notably of order > 3,

for which the first-order nonlinear recurrence s [crs_ + ], for suitable a, generates an array

that partitions Z+ in the manner of generation of Stolarsky’s array. Burke and Bergum [2], Butcher

[31, Gbur [4], Hendy [5], Kimberling [6], Morrison [71, and Stolarksy [1] deal with Stolarsky’s original
array or other arrays with row sequences linearly recurrent with order 2. The results presented here

for higher order recurrences are believed to be new.

2. DEFINITIONS AND AN EXAMPLE.

An array s(i,j), > 1, j > 1, of positive integers is a Stolarsky array [specifically, a (c,_,,c_,
Co) Stolarsky array] if
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(i) every positive integer occurs exactly once in the array, and

(ii) there exist integers c_, c-2,..., co, where co 0 and k >_ 2, such that

(i,j) c_ls(i,j 1) + c_..s(i,j 2) +... + cos(i.j

for allj>_k+l for alli>_l.

For a given Stolarsky array, if k is the least positive integer for which (2.1) holds for some choice

of integers ck-, c_2,..., co, where co :P 0, then these integers are uniquely determined, and identity

(2.1) is the recurrence of the array. The array has order k, and the polynomial xk c-xk-

c_x- clx co is the characteristic polynomial of the array.

8 13 21

26 42 68

47 76 123

63 102 165

81 131 212

97 157 254

2 3 5

4 6 10 16

7 11 18 29

9 15 24 39

12 19 31 50

14 23 37 60

17 28 45 73 118 191 309

Table 1: The First Seven Rows of Stolarsky’s Array

As an example, consider the array in Table 2, found by using the dominant real root ct

3.62736508471183 of x 3x 2x (in Table 3).

In Table 2, it is easy to verify that the numbers s(i,j) in Row i, for each > 1, satisfy the

recurrence

s(i,j) 3s(i,j 1) + 2s(i,j 2) + s(i,j 3)

for all j > 4. Now c exceeds and (by Corollary 3) s(i,j) [crs(i,j 1) + ] for all j > 2 for all

> 1. Here again note that s(1,1) by definition. It follows that each positive number appears

once and only once in the array, as s(i, 1) for > 2 is, by construction, the least positive integer not

among s(h,j) for < h < i- and j > 1. Therefore, the array is a third-order Stolarsky array.

4

2 7

3 11

5 18

6 22

15 54 196 711 2579 9355

25 91 330 1197 4342 15750

40 145 526 1908 6921 25105

65 236 856 3105 11263 40855

80 290 1052 3816 13842 50210

8 29 105 381 1382 5013 18184 65960

Table 2: A Third-order Stolarsky Array

Our main objective can now be stated as follows: to determine polynomials

f(X) X Ck_l xk-1 ClX CO (2.2)
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for which the formula [an + ] generates a Stolarsky array ill the manner of the above example.

3. CONDITIONS FOR GENERATING STOLARSKY ARRAYS.

LEMMA 1" If a > and m and n are positive integers satisfying m < n, then [cr,n + 1/2] < [ctn+-].

PROOF" If m < n then am < crn -a < an 1, so that

[om, + l -< an + -1 < [on + -l.

LEMMA 2: Suppose the polynomial (2) has a dominant real root a > 1. For arbitrary positive

integer n, let g(n) [an + ],92(n)= 9(9(n)) ,gk(n) 9(gk-’(n)), If

gk+’(n) ck_,9+"-(n) +... + c,g"+’(n) + Cog"(n), (3.1)

where g(n) n, holds for m 0 and all n > 1, then (3.1) holds for all m > 0 for all n > 1.

PROOF"

a’,+’-(,,) a"(a’-(,))

,,-,"-’("(-)) +... + ,a(a"(-)) + a’(-)
..k+rn-1 clgm+lc,_,y (n) +... + (n) + cog"(n).

THEOREM 1" Let rl ((an + )) be the fractional part of g(n) in Lemma 2. That is, rl

-[an +an + ]. Let r2 ((ag(n)+ )),... ,vk (((g-(n) + )). Let

r2(C0 " ClaM
2(a1"----(c + c] +... + c_1 1) rco

(0 + ,- + -) -,(0 + ,- +... + ---)
Ot3 otk_

rk

Let s(1,j) [aj + ] for j > and s(1,1) 1. Define s(i, j inductively by letting s(i, 1) be the

least positive integer not among s(h,j) for < h < i- and j > 1, and s(i,j) [as(i,j- 1)+ ]
for j > 2. Then {s(i,j)} is a Stolarsky array if and only if IMI < 1.

Before proving Theorem 1, we use the notation introduced there to establish a lemma:

,’- -. for > 1.LEMMA 3: gi(n) a’n + ()X-f_ ,j= rja’

PROOF" g(n) cn + rl, as asserted for 1. The identity follows by induction on i.

PROOF OF TItEOREM 1" In view of Lemmas and 2, it suffices to show that the inequality

IMI < is equivalent to identity (3.1) for m 0 and all n > 1.

k

g(n) _, cl_,g-i(n)

kn + rj
--1

_, -,+(
_ -i=l j=l
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rk_ (Ol Ck_1) rk,

which equals M. Now gk(n) k,=1 c-,gk-’(n), as an integral linear combination of integers, is itself

an integer. In order for this to be zero, it is necessary and sufficient that IMI < 1.

COROLLARY 1: If c, > 0, for 0 < < k- 1, are integers satisfying

c_1 > + Co + c + + c_2, (3.2)

then the array s(i,j) is a Stolarsky array.

PROOF: Let f(x) be as in (2.2) with c, as in (3.2). Since f(x) > 0 for all x > ck-, + 1, and

f(c_) < 0, the dominant real root a satisfies c-i < a < ck-1 + 1. Then

M<

since each of the numbers

2(c_1- 1) (Co + c +... + c-2 + c_ 1),

riCo F2(co 4. Cl) rk-l(co 4. ClO 4.... 4. k_20k-2)
O O ok- rk

is nonnegative and < Ck-1 < O.

Consequently, (3.2)implies

M <
2(Ck_l- I)(2c_i- 2)= 1.

To see that M > -1 also, substitute s, ri for 1, 2,..., k to find that

M -1(Co 4. t21 4.... 4. 12k-1 1) + __sCo + s2(Co + c,a)
2(a 1) a 2

33( + ClO + C22) $k-l( + Cl @... @ Ck-2k-2)+ +...+
3 k-

Since all these multiples of the s, are nonnegative,

(co + c 4.... 4- c_1 1),

so that M > -1.

Corollary shows that there exist Stolarsky arrays of every order k > 2. However, it is possible

for IMI to be less than even when inequality (3.2) fails. Corollaries 2 and 3 reveal two such cases.

COROLLARY 2: Let a be the dominant real root of the polynomial

p(z) z’- z- z’-2 z- 1, k > 2.

Then the Stolarsky array {s(i,j)} defined in Theorem is a Stolarsky array having characteristic

polynomial (x- 1)p(x).

PROOF" Write

(x 1)p(x) (x 1)(x ak_l xk-1 a:_:x:-2 ax ao)

xk-1xk+l Ckxk 12k-1 Cl x CO,
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where ck ak-1 + 1, ck_l ok-2 a_, cm ao a and co -ao.

Then Co + c +... + c_ + c 0, so that

rico r2(Co + ClO) r3(Co + cl + c2c2)M=
o 0 03

r(co + ca +... + c_a-)
ok Fk+

For the case at hand, namely, -1 and ci 0 for k- 1, we have

M -r+ + < 1.

also, clearly, M > 1. By Theorem 1, {(i, j) is a Stolarsky array.

(3.3)

COROLLARY 3: Suppose that p(x) xa-a2x2-ax-ao has a dominant real root a that satisfies

the inequalities

a0 > 1,a, > ao(1 -!), and 32 > (a0 + a,)(1 _1).
Then the array {s(i, j) is a Stolarsky array.

PROOF" As in the proof of Corollary 2, we have

U rao r2[ao + a(al ao)] + r3[a0 + a(a ao) + a(a2 a)]
r4+ (3.4)

A sufficient condition that IMI < is that the coefficients of r, r, and rz be nonnegative. These

three inequalities are easily seen to be equivalent to the three stated in the corollary.

4. CONCLUDING REMARKS.

Corollary 3 applies to several cases not previously covered. Following is a table showing sev-

eral relevant choices of az, a, a0, the derived coefficients, and the dominant real root c. Here, the

characteristic polynomial is (x- 1)p(x), so that ca a + 1, c2 a- az, c ao- a, and co -a0.

a2 al ao

2

2 2

3 2

3 2 Cl CO

2 0 0 -1

3 -1 0 -1

3 0 -1 -1

4 -1 -1 -1

1.83928675521416

2.54681827688408

2.83117720720334

3.62736508471183

Table 3: Examples for Corollary 3

For example, to generate a (2,0,0,-1) Stolarsky array, let a 1.83928675521416, let s(i,j)

[aj + ] for j > 1, and define s(i,j) via iteration as stated in Theorem with s(1, 1) 1. See Table

4.

A notable feature of this array is that the linear recurrence for Row is given by

s(i,j) 2s(i,j 1)- s(i,j -4) for j > 5 and >_ 1,

and not by

s(i,j) s(i,j 1) + s(i,j 2) + s(i,j 3), (4.1)
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as naight have been expected since o is a. root of :t’3 -.r x 1. To see that (4.1) fails, consider the

numbers 8, 15, 28, 52, in Row 4. Of course, x 2x3 + is a multiple of xa :r x 1. One wonders

if there is a Stolarsky array in which at least one row satisfies a second-order recurrence, rows without

this property satisfy a third-order recurrence, and the two corresponding characteristic polynomials

are relatively prime.

Finally, we note that the arrays s(i, j) investigated in this article have "almost geometric" rows,

in the sense that s(z,j + 1)/s(z,j) stays close to a. Moreover, they also have "almost arithmetic"

columns. Perhaps someone will wish to investigate these properties further.

2 4 7 13 24 44 81 149 274

3 6 11 20 37 68 125 230 423 778

5 9 17 31 57 105 193 355 653 1201

8 15 28 52 96 177 326 600 1104 2031

Table 4: A (2, 0, 0, -1) Stolarsky Array
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