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ABSTRACT. The basic problem is to determine the geometry of an arbitrary multiply connected bounded

region inR together with the mixed boundary conditions, from the complete knowledge ofthe eigenvalues

{’}’-1 for the Laplace operator, using the asymptotic expansion of the spectral function 0(t) exp(-t)

ast --0.
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1. INTRODUCTION.
The underlying problem is to deduce the precise shape of a membrane from the complete knowledge

of the eigenvalues {j}’. for the Laplace operator A2-i-i( .)2 in the xx2-plane.

Let __.R be a simply connected bounded domain with a smooth boundary 0. Consider the

Neumann/Dirichlet problem

(A /)u 0 in , (1.1)

Ou
---0 or u-0 on 0, (1.2)
On

where denotes differentiation along the inward pointing normal to 0V2 and u

_
C2(Q)t’)C(-). Denote

its eigenvalues, counted according to multiplicity, by

0<XlX2<...<.j...-,oo as j-,oo. (1.3)

The problem of determining the geometry of f2 has been investigated by Pleijel ], Kac [2], McKean and

Singer [3], Stewartson and Waechter [4], Smith [5], Sleeman and Zayed [6,7], Gottlieb [8], Greiner [9],
Zayed [10-13] and the references given there, using the asymptotic expansion of the trace function

O(t)-tr[exp(-tA2)]= , exp(-tX,) as t--0. (1.4)

It has been shown that, in the case of Neumann boundary conditions (N.b.c.):
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0(t) L___[+ 101 +a0+ k2(o)do+0(t) as t-0, (1.5)
41r/ 8(m)

while, in the case of Dirichlet boundary conditions (D.b.c.):

0(t) 101 +a0+ k2(oo+t) as t0, (1.6)=4m-8(m)m n

In these formulae, I1 is the area of , lis the total length of 0 and k(o) is the cuwature of

#. e constant te a0 has geometric significance, e.g., if is smooth and convex, then a0 ; and if

is permitted to have a finite number of smooth convex holes "H", then a0 (1 H).
The object of this paper is to discuss the following more general inverse problem: t be an

arbitrary multiply connected bounded region in R which is surrounded internally by simply connected

bounded domains , with smooth boundaries 0, m and externally by a simply connected

bounded domain = with a smooth bounda #=. Suppose that the eigenvalues (1.3) are given for the

eigenvalue equation

(A+X)u=0 in , (1.7)

together with one of the following mixed boundary conditions:

0u
=0 on 0i, i=l,...,k and u=0 on 0i, i=k+l,...,m, (1.8)
0n

u-0 on 0,, i=l k and 0=0 on 0i, i=k+l m, (1.9)
0n

where on denote differentiations along the inward inting normals to the boundaries 0, m,

respectively.

The basic problem is to deteine the geomet of om the asymptotic expansion ofe spectral

function (1.4) for small sitive t.

Note that problems (1.-(1.9) have been investigated recently by yed [11] in the special ca

where is an arbitra doubly connected bounded region (i.e., m=2).

2. STAMENT OF OUR ULTS.

Suppose that the boundaries 0, 1,...,m are given locally by the equations x" y’(o), n 1, 2

in which o, 1,...,m are the arc-lengths of the counterclocise oriented boundaries 0 and

y"(o) C=(0). tL and k(o) be the lengths and the cuwatures of0, m respectively. en,
the results of our main problem (1.-(1.9) can be summarized in the following cases:

CASE 1. .b.c. on 0i, 1 ,k and D.b.c. on 0,, k + 1 ,m)

0(t) + L,- L, + (2-m)

7i +

+ 0(t) as 0.

CASE 2. .b.c. on a, 1,..., k and N.b.c. on a + 1,..., m)

In this case the asymptotic expansion of 0(t) as 0 has the me form (2.1) with the interchanges

1, ...,k , k + 1 ,m.

(2.1)
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With reference to formulae (1.4), (1.5)and to articles [6], [11], [12] the asymptotic expansion (2.1)
may be interpreted as follows:

(i) f is an arbitrary multiply connected bounded region in R and we have the mixed boundary

conditions (1.8) or (1.9) as indicated in the specifications of the two respective cases.

(ii) For the first four terms, f is an arbitrary multiply connected bounded region in R:’ of area f2 I.
In case 1, it has H (m 1) holes, the boundaries O,, k are of lengths L, and of curvatures

i-I

k,(o,), 1, ...,k together with Neumann boundary conditions, while the boundaries Of2,, k + m

are of lengths , L, and of curvatures k,(oi), k + m together with Dirichlet boundary conditions,
i-k+l

provided H is an integer.
We close this section with the following remarks:

REMARK 2.1. On setting k 0 in formula (2.1) with the usual definition that is zero, we obtain
i-I

the results of Dirichlet boundary conditions on Of2i, 1, ...,m.

REMARK 2.2. On setting k m in formula (2.1) with the usual definition that is zero, we
i-m+l

obtain the results of Neumann boundary conditions on OQ,, 1, ...,m.

3. FORMULATION OF THE MATHEMATICAL PROBLEM

It is easy to show that the spectral function (1.4) associated with problems (1.7)-(1.9) is given by

(3.1)

where G(x_,,x_:;/)is Green’s function for the heat equation

A2-- u-0, (3.2)

subject to the mixed boundary conditions (1.8) or (1.9) and the initial condition

-,o \-

where &(x_,, -_x2// is the Dirac delta function located at the source point x,-x2. Let us write

where

G(x_,_;t)- Go(X_, _x.z;t (3.4)

so that G(x_l,_x2;t) satisfies the mixed boundary conditions (1.8)or (1.9).

On setting xl-x- x we find that
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O(t) + K(t), (3.6)

where

The problem now is to determine the asymptotic expansion of K(t) for small positive t. In what follows

we shall use Laplace transforms with respect to t, and use s as the Laplace transform parameter; thus we

define

(x_,,x_:;s:’- I(R)e-’2’G(x_,,x_2;t)dt. (3.8,

An application of the Laplace transform to the heat equation (3.2) shows that -(x_t,xz;s\ satisfies the

membrane equation

(A:,-S-)-(X_,X_:;S:’)---6(x_-_x:,) in ,, (3.9)

together with the mixed boundary conditions (1.8) or (1.9).
The asymptotic expansion of K(t) for small positive t, may then be deduced directly from the

asymptotic expansion of(s) for large positive s, where

-(sz, ff(x_,x_;sm)dx_. (3.10,

4. CONSTRUCTION OF GREEN’S FUNCTION.
It is well known [6] that the membrane equation (3.9) has the fundamental solution

) (s%) (4.)

where rx, x2 is the distance between the points x (x,x) and x (x,x) of the region f while

K0 is the modified Bessel function of the second kind and of zero order. The existence of this solution

enables us to construct integral equations for (xj,x_:;s2) satisfying the mixed boundary conditions (1.8)

or (1.9). Therefore, Green’s theorem gives:

CASE 1. (N.b.c. on 0ffi, 1,...,k and D.b.c. on Of,, k + 1,...,rn)

0
sr

lfO (x_+_ - y;s s
t,-,/ "_ K - ay_. (4.2)

CASE 2. (D.b.c. on (gQ, 1, ...,k and N.b.c. on 0,, k + 1 m)

In this case Green’s function "(x_,x_z;s has the same form (4.2) with the interchanges 0,,

i-- k 0,, i---k + m.
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On applying the iteration method (see [11 ], [12]) to the integral equation (4.2), we obtain Green’s

function x_l,x_..;s2/, which has the regular part:

K sr.: K sr, dy+ -- .,/,

+ ",., o,,,,"-o, M,(y_, y ’) O--Ko(.Vr,ldydy
ani,. __)

f f --CKo(%)mfY y’ Kosr.,_.._dydy’i- ..niy

where

+,-1/, .f{fKo(sr,_,,._)L:(yy,)ay,.,, _" (4.3)

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

(4.10)

and

(4.11)

[
In the same way, we can show that in case 2 Green’s function {X_l,X_2;s2J has a regular part of the

same form (4.3) with the interchanges 0f,, k 0f2, k + m.
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On the basis of (4.3)the function Xl,X,_;s’-) will be estimated for large values of s. The case when

x and x,. lie in the neighborhoods of Og2,, m is particularly interesting. For this case, we need to

use the following coordinates.

5. COORDINATFINTItENEIGItBORItOODSOFOf2,,i=a m.

Let ni, i-1 rn be the minimum distances from a point x---(x_i,x-]\/ of the region g2 to the

boundaries Of2i, 1,...,m respectively. Let n,(o,), 1, ...,m denote the inward drawn unit normals to

Off2,, ,m respectively. We note that the coordinates in the neighborhood of Og2,, -k + 1, ...,m

and its diagrams (see [11 ]) are in the same form as in section 5.1 of [11 with the interchanges o o,,

n2 n,, h h,, I2 I,, D(I) D(li) and 5 &,, k + ,m. Thus, we have the same formulae

(5.1.1)-(5.1.5) of section 5.1 in [11] with the interchanges n2"- n,, nz(o,.)- n,(oi), t2(o2)’,- t,(o,),

k.(o2) k,(o,), i--k + m.

Similarly, the coordinates in the neighborhood of Of2,, 1, ...,k and its diagrams (see [11]) are

similar to those obtained in section 5.2 of [11 with the interchanges oi o;, n n,, h h,, I li,

D(li) D(/,) and b hi, k. Thus, we have the same formulae (5.2.1)-(5.2.5) of section 5.2

in [11 with the interchanges n n,, n(ol) ni(o,), tl(oi) t,(;,) and ki(o) k,(oi), k.

6. SOME LOCAL EXPANSIONS.

It now follows that the local expansions of the functions

when the distance between x and y is small, are very similar o those obtained in section 6 of [11]. Con-

sequently, for k,k + 1, ...,m, the local behavior of he following kernels:

when the distance between y and y’ is small, follows directly from the knowledge of the local epansions

of(a..

DEFINITION 1. Let l and 2 be points in the upper half-plane j- 0, hen we define

)12 V(l 2l) 4- (21 4- )2. (6.4)

An e ,;s -function is defined for points and belong to sufficiently small domains ?(I,) except

when I, 1, ...,m and K is called the degree of this function. For every positive integer A i has

the local expansion (see [11 ]):
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where " denotes a sum of a finite number of terms in which f(l) is an infinitely differentiable function.

In this expansion, P, P2, l, tn are integers, where Pl 0, P2 0, a: 0, g min(P + P:, q), q + m and

the minimum is taken over all terms which occur in the summation Y.’. The remainderR^(t,2;s) has

continuous derivatives of order d s A satisfying

,_2;s -0(s-Ae s/’’2) as s o, (6.6)

where A is a positive constant.

Thus, using methods similar to those obtained in section 7 of [11], we can show that the functions

(6.1) are eX-functions with degrees k 0, -1 respectively. Consequently, the functions (6.2) are e-functions
with degrees k- 0,-1, while the functions (6.3) are eX-functions with degrees g 0,1 respectively.

DEFINITION 2. IfXl andx2 are points in large domains f + 0fi, k,k + 1, ...,rn, then we

define

and

f2-min(rxly+ry) if yE Ofi, i-1 ,k,

J2 min rx, +r if y

_
Of2i, k + m.

An Ek(X_l,_x2;s)ofunction is defined and infinitely differentiable with respect tox1_ and x2_ when these

points belong m large domains + 0fi except whenx x 0i, ,m. Thus, the E-function has

a similar local expansion of the e-function (see [6], [11 ]).

By the help of section 8 in [11], it is easily seen that formula (4.3)is an E(x_,x_2;s)-function and

consequently

(x_’_x2;s2) "i-, 0 {[1+ logsfl2,

+ Y. 0 [1 + logs/2l (6.7)
i-k+l

which is valid for s , where A, 1, ...,m are positive constants.

Formula (6.7)shows (x_,,_x,;s2) is exponentially small fors

7. THE ASYMPTOTIC BEHAVIOR OF X_1,_X2;S2).
With reference to sections 7 and 9 in [11], if the e-expansions of the functions (15.1)-(6.3) are

introduced into (4.3) and if we use formulae similar to (7.4) and (7.10) of section 7 in [11], we obtain the

following local behavior of Z ,_x;s as s which is valid when and/ are small-
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where, ifx and x2 belong to sufficiently small domains D(li), k,k + 1, ...,m, then

-Ko(Sl,) + O (s exp(-A,slt)}. (7.2)

k andl2>),>O,i--k+l,...,m the function (x_,x_2;s21 is of orderWhen fla > 0,

O{exp(-cs)}ass --,oo, c >0. Thus, since lim =---12 lim 1, thenifxl and x2 belong to large domains
12---0 P2 /--0 P

ff + 02, ,k, we deduce for s oo that

i(X_I,X_2;S2) --Ko(sf2)+O{s-’exp(-Aisf,2)} (7.3)

while, ifx and x2 belong to large domains if2 + 0, k + m, we deduce for s that

$. CONSTRI/CTION OF OUR RF_NULTS.

Sincefor h, 0,i 1, ...,k,k + 1,...,, the functionsx ,x_;s are oforderO {exp(-2hi)},

the integral of the function .(x_, x ;s over the region f2 can be approximated in the following way (see

(3.10)):
h, L,

’(s2)-,./ , x_,x_;s {1-k,(x)2Idd2
2-o -o

+ E O{exp(-2sA,h,)} as s oo. (8.1)
i-1

If the e’-expansions of ,(x_,x;s21,i-a\/_ k,k+a,...,m, are introduced in.to (8.1), one obtains an

asymptotic series of the form:

(s2) X a,s- +0(s-i-x) as s--oo, (8.2)

where the coefficients a,, are calculated from the eX-expansions by the help of formula (10.3) of section 10

in [11].
Now, the first three coefficients a, a2, a3 take the forms:



INVERSE EIGENVALUE PROBLEM 579

a, L, + L,
o\i-1

a2-(2-m), (8.3)

k (o,)doi + .,. kCoi)do

On inserting (8.3) int (8.2) and inverting Laplace transforms and using (3.6) we arrive at our result
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