A COMMON FIXED POINT THEOREM FOR TWO SEQUENCES OF SELF-MAPPINGS

TAKESHI TANIGUCHI

Department of Mathematics Kerume University Miimachi, Kurume, Fukuoka, Japan

(Received September 7, 1988 and in revised form April 19, 1989)

ABSTRACT. In this paper a common fixed point theorem for two sequences of self-mappings from a complete metric space M to M is proved. Our theorem is a generalization of Hadzic's fixed point theorem[1].

KEY WORDS AND PHRASES. A common fixed point, self-mappings and complete metric spaces.

1980 AMS(MOS) SUBJECT CLASSIFICATION CODES. 47H10.

1. INTRODUCTION.

Banach's fixed point theorem has been generalized by many authors. Among such investigations there are several, interesting and important studies[2]. Particularly, K. Iseki[3] proved a fixed point theorem of a sequence of self-mappings from a complete metric space M to M. We are interested in fixed point theorems of a sequence of self-mappings since they pertain to the problem of finding an equilibrium point of a difference equation $x_{n+1} = f(n, x_n)$ (n = 1, 2, ...).

Recently O. Hadzic proved the existence of a common fixed point for the sequence of selfmappings $\{A_i\}(j=1,2,...)$, S and T where A, commutes with S and T. His result is as follows:

THEOREM 1. Let (M,d) be a complete metric space, $S,T:M \to M$ be continuous, $A_j: M \to SM \cap TM(j = 1, 2, ...)$ so that A_j commutes with S and T and for every i, j(i = j, i, j = 1, 2, ...)and every $x, y \in M$:

$$d(A_{i}x, A_{j}y) \leq qd(Sx, Ty), \quad 0 < q < 1$$

$$(1.1)$$

Using Theorem 1, he gave a generalization of Gohde's fixed point theorem and extended Krasnoseliski's fixed point theorem.

In this paper we shall present a generalization of Hadzic's fixed point theorem.

2. MAIN THEOREMS.

Let N denote the set of all positive integers. In this section we shall prove the following theorem.

THEOREM A. Let (M,d) be a complete metric space and let $\{A_p\}, \{B_q\}(p, q = 1, 2, ...)$, be two sequences of mappings from M to M.

Suppose that the following conditions are satisfied; for all $m, n \in N$ and all $x, y \in M$,

(a) there exists a constant k (0 < k < 1) such that

$$d(A_{2n-1}x, A_{2n}y) \le kd(B_{2n-1}x, B_{2n}y),$$

 $d(A_{2n}x, A_{2m+1}y) \le kd(B_{2n}x, B_{2m+1}y)$, for all $m \ge n \ge 1$,

- (b) $A_{2n}B_{2m} = B_{2m}A_{2n}$ and $A_{2n-1}B_{2m-1} = B_{2m-1}A_{2n-1}$,
- (c) $B_{2n}B_{2m} = B_{2m}B_{2n}$ and $B_{2m-1}B_{2n-1} = B_{2n-1}B_{2m-1}$,
- (d) $A_{2n-1}(M) \subset B_{2n}(M)$ and $A_{2n}(M) \subset B_{2n+1}(M)$.

If each $B_q(q=1,2,...)$ is continuous, then there exists a unique fixed point for two sequences $\{A_p\}$ and $\{B_q\}(p,q=1,2,...)$.

PROOF. Let x_0 be an arbitrary point in M. By condition (d) there exists a point $x_1 \in M$ such that $A_1x_0 = B_2x_1$. Next we choose a point $x_2 \in M$ such that $A_2x_1 = B_3x_2$. Inductively, we can define by condition (d), the sequence $\{x_n\}$ such that

$$A_{2n-1}x_{2n-2} = B_{2n}x_{2n-1} \text{ and } A_{2n}x_{2n-1} = B_{2n+1}x_{2n}, \quad n \in \mathbb{N}.$$

$$(2.1)$$

First of all we shall show that $\{B_n x_{n-1}\}$ is a Cauchy sequence. By (2.1) and condition (a), we obtain that for all $n \in N$

$$\begin{aligned} &d(B_{2n-1}x_{2n-2},B_{2n}x_{2n-1}) = d(A_{2n-2}x_{2n-3},A_{2n-1}x_{2n-2}) \\ &\leq \quad kd(B_{2n-2}x_{2n-3},B_{2n-1}x_{2n-2}) = kd(A_{2n-3}x_{2n-4},A_{2n-2}x_{2n-3}) \\ &\leq \quad k^2d(B_{2n-3}x_{2n-4},B_{2n-2}x_{2n-3}) \leq \dots \leq k^{2n-2}d(B_1x_0,B_2x_1) \end{aligned}$$

and similarly that

$$d(B_{2n}x_{2n-1}, B_{2n+1}x_{2n}) = d(A_{2n-1}x_{2n-2}, A_{2n}x_{2n-1})$$

$$\leq kd(B_{2n-1}x_{2n-2}, B_{2n}x_{2n-1}) \leq \dots \leq k^{2n-1}d(B_{1}x_{0}, B_{2}x_{1}).$$

418

Since 0 < k < 1, this implies that the sequence $\{B_n x_{n-1}\}$ is a Cauchy sequence. Thus $\{B_n x_{n-1}\}$ converges to some point v in M because M is complete. Now since each $B_q(q \in N)$ is continuous, we obtain that

$$B_{2m}v = B_{2m}(\lim_{n \to \infty} B_{2n+1}x_{2n}) = \lim_{n \to \infty} (B_{2m}B_{2n+1}x_{2n})$$
$$= \lim_{n \to \infty} (B_{2m}A_{2n}x_{2n-1}) = \lim_{n \to \infty} (A_{2n}B_{2m}x_{2n-1})$$

and similarly that $B_{2m+1}v = \lim_{n \to \infty} (A_{2n+1}B_{2m+1}x_{2n})$ and $B_{2m-1}v = \lim_{n \to \infty} (A_{2n-1}B_{2m-1}x_{2n-2})$. Hence by condition (c), we have

$$d(B_{2m}v, B_{2m+1}v) = \lim_{n \to \infty} d_{\infty} (A_{2n}B_{2m}x_{2n-1}, A_{2n+1}B_{2m+1}x_{2n})$$

$$\leq \lim_{n \to \infty} kd (B_{2n}B_{2m}x_{2n-1}, B_{2n+1}B_{2m+1}x_{2n})$$

$$= kd(B_{2m}v, B_{2m+1}v)$$

and $d(B_{2m}v, B_{2m-1}v) \le kd(B_{2m}v, B_{2m-1}v)$ $(m \in N)$ in like manner, which implies that $B_mv = B_{m+1}v$ for all $m \ge 1$. Next we shall show that $A_nv = B_nv$ for all $n \le 1$. By (2.1), conditions (b) and (c), we have

$$d(B_{2n+1}B_{2m+2}x_{2m+1}, A_{2n}v) = d(A_{2m+1}B_{2n+1}x_{2m}, A_{2n}v)$$

$$\leq kd(B_{2m+1}B_{2n+1}x_{2m}, B_{2n}v)$$

$$= kd(B_{2n+1}B_{2m+1}x_{2m}, B_{2n}v)$$

Thus letting $m \to \infty$, we obtain that $d(B_{2n+1}v, A_{2n}v) \le kd(B_{2n+1}v, B_{2n}v)$ from which it follows that $A_{2n}v = B_{2n+1}v$ for all $n \ge 1$. And since

$$d(A_{2n-1}v, A_{2n}v) \leq kd(B_{2n-1}v, B_{2n}v)$$
 and $d(A_{2n+1}v, A_{2n}v) \leq kd(B_{2n+1}v, B_{2n}v)$,

we obtain that $A_n v = A_{n+1} v = B_{n+1} v = B_n v$ for all $n \in N$. Furthermore, for all $n \in N$, we obtain

$$d(A_{2n}v, A_{2n-1}A_{2n+1}v) \leq kd(B_{2n}v, B_{2n-1}A_{2n+1}v) = kd(A_{2n}v, A_{2n-1}A_{2n+1}v)$$

and
$$d(A_{2n-1}v, A_{2n}A_{2n+1}v) \le kd(B_{2n-1}v, B_{2n}A_{2n+1}v) = kd(A_{2n-1}v, A_{2n}A_{2n+1}v)$$

Therefore we obtain $u = A_p(u) = B_p(u)$ for all $p \ge 1$ setting $u = A_n v$ because 0 < k < 1.

Now we shall prove that u is a unique common fixed point of $\{A_p\}$ and $\{B_p\}$. If there exists another point w such that $w = A_p w = B_p w$ for all p > 1, then

$$\begin{split} d(u,w) &= d(A_{2m-1}u, A_{2m}w) \leq k d(B_{2m-1}u, B_{2m}w) \\ &\leq k d(u,w), \end{split}$$

which is a contradiction since 0 < k < 1. Therefore u is a unique common fixed point of two sequences of self-mappings $\{A_n\}$ and $\{B_n\}$. This completes the proof.

If $S = B_{2n-1}$ and $T = B_{2n}(n = 1, 2, ...)$, we obtain Theorem 1 as the corollary of Theorem A. Next we obtain the following theorem which is a generalization of Theorem 1 in [4].

THEOREM B. Let (M,d) be a complete metric space and let $\{T_p\}$ (p = 1, 2, ...) be a sequence of mappings from M to M. Suppose that the following conditions as satisfied for all $m \ge n \ge 1$ and $x, y \in M$

(e) there exists a constant h(h > 1) such that

 $d(T_{2n-1}x, T_{2n}y) \ge hd(x, y)$ and $d(T_{2n}x, T_{2m+1}y) \ge hd(x, y)$,

(f) $T_{p}T_{q} = T_{q}T_{p}$ (p,q are even or odd respectively).

If every T_n is continuous on M and $T_n(M) = M(n = 1, 2, ...)$, then there exists a unique fixed point for T_n .

PROOF. Set $A_n = I$ (I is the identify map from M to M) in Theorem A. The proof is complete.

REMARK 1. We remark that the mapping $f: X \to X$ in Theorem 1 of [4] is continuous from the condition of the theorem.

REFERENCES

- HADZIC, O. Common Fixed Point Theorems for Family of Mappings in Complete Metric Spaces, <u>Math.Japan., 29</u> (1984), 127-134.
- JOSHI, M.C. and BOSE, R.K., <u>Some Topics in Nonlinear Functional Analysis</u>, John Wiley and Sons, New York, 1985.
- 3. ISEKI, K. On Common Fixed Points of Mappings, Bull.Austr.Math.Soc. 10(1975), 365-370.
- WANG, S.Z., LI, B.Y., GAO, Z.M., and ISEKI, K. Some Fixed Point Theorems on Expansion Mappings, <u>Math.Japan.</u>, <u>29</u>(1984), 631-636.
- CIRIC, B. A Generalization of Banach's Contraction Principle, <u>Proc. Amer. Math. Soc.</u>, 45 (1974), 267-237.
- GILLESPIE, A.A. and WILLIAMS, B.B. Fixed Point Theorems for Expanding Maps, <u>Applicable Analysis, 14</u> (1984), 161-165.
- JUNGCK, G. Commuting Mappings and Fixed Points, <u>Amer.Math.Monthly</u>, <u>83</u>(1976), 261-263.
- RHOADES, B.E., Contractive Definitions Revisited, Topological Methods in Nonlinear Functional Analysis, <u>Contemp. Math. Amer. Math. Soc.</u>, <u>21</u>(1983), 190-205.