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ABSTRACT. In this paper a common fixed point theorem for two sequences of self-mappings from

a complete metric space M to M is proved. Our theorem is a generalization of Hadzic’s fixed point

theorem[l].
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1. INTRODUCTION.
Banach’s fixed point theorem has been generalized by many authors. Among such

investigations there are several, interesting and important studies[2]. Particularly, K. Iseki[3]
proved a fixed point theorem of a sequence of self-mappings from a complete metric space M to M.
We are interested in fixed point theorems of a sequence of self-mappings since they pertain to the

problem of finding an equilibrium point of a difference equation :, + f(n,z,) (n 1,2 ).

Recently O. Hadzic proved the existence of a common fixed point for the sequence of self-

mappings {Aj}(j 1,2,...), S and T where Aj commutes with S and T. His result is as follows:

THEOREM 1. Let (M,d) be a complete metric space, S,T:M-,M be continuous,

Aj:M SM ITM(j 1,2 so that A commutes with S and T and for every i,j(i j,i,j 1,2

and every z, y E M:

d(A,x,A:y) < qd(S:,Ty), 0 < q < (1.1)

Using Theorem 1, he gave a generalization of Gohde’s fixed point theorem and extended

Krasnoseliski’s fixed point theorem.

In this paper we shall present a generalization of Hadzic’s fixed point theorem.
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2. MAIN THEOREMS.
Let N denote the set of all positive integers. In this section we shall prove the following

theorem.

THEOREM A. Let (M,d) be a complete metric space and let {At,},{Bq}(p,q= 1,2 ), be two

sequences of mappings from M to M.
Suppose that the following conditions are satisfied; for all m,n 6. N and all z,u M,

(a) there exists a constant k (0 < t < 1) such that

d(A2n- lX, A2n/) _< kd(B2n_ lz, B2nY),

d(A2nx’A2m + lY) -< Itd(B2n;r’B2m + lY)’ for all m _> _> 1,

(b) A2nB2m B2mA2. and A2._ 1B2m- B2,n- A2r,- ,

(c) B2nB2m B2mB2n and B2,,,_ B2n_ B2,.,- 1B2m- 1,

(d) A2._ (M) C B2n(M and A2.(M C B2n + I(M).

If each Bq(q 1,2 is continuous, then there exists a unique fixed point for two sequences

{A,} and {Ba}(p,q 1,2 ).
PROOF. Let z0 be an arbitrary point in M. By condition (d) there exists a point r M such

that AlZ0 B2z1. Next we choose a point z M such that A2x B3z2. Inductively, we can define

by condition (d), the sequence {,} such that

A2n lX2n B2nx2n and A2nx2n B2n + lX2n r N. (2.1)

First of all we shall show that {B,z,_ 1} is a Cauchy sequence. By (2.1) and condition (a), we
obtain that for all n e N

d(B2.- lz2. 2, B2n;g2n 1) d(A2n- 2x2n- 3’A2n 1;g2. 2)

<-- kd(B2n 2"12n 3, B2n l’l2n 2) kd(A2n- 3x2n 4, A2n 2X2n 3)

<_ k2d(B2n_ 3Z2n_4, B2n_ 2z2n 3) _< _< t2n- 2d(BlZo, B2xl)

and similarly that

d(B2.z2. ,B2. + la2n) d(A2.- ix2- 2, A2nx2n- 1)

<-- kd(B2n- 1X2n 2’B2nz2n 1) --< --< k2n- ld(BlXo, B2Xl)"
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Since 0 < k < 1, this implies that the sequence {B,z,,_l} is a Cauchy sequence. Thus

converges to some point v in M because M is complete. Now since each B,(q e. N) is continuous, we

obtain that

nlimoo(B2mA2nx2n- 1)- n-oolim(A2nB2m;r2n -1)

and similarly that Bz.., + ff =nlimoo(A=. + ,Bz,,, + lzz.) and B._ ,v =nlimoo(A. 1Bm_ 1:%.- 2)"
Hence by condition (c), we have

< lim kd (B2nB:mz2n_ ,B2n + 1B2m +

kd(B2mv, B2, + lV)

and d(B2mv. B2m v) < kd(B2mv, B2m_ iv) (m
_
N) in like manner, which implies that B,,v B,, + v

for all m _> 1. Next we shall show that A,v B,v for all n _< 1. By (2.1), conditions (b) and (c), we

have

d(B2n + IB2m + 2’2m + l’A2nv) d(A2m + B2n + lx2m’A2nv)

< kd(B2m + 1B2n + lZ2m’ B2nv)

kd(B2n + 1B2m + iz2ra, B2nv)

Thus letting m , we obtain that d(B2n + lV, A2nv)< kd(B2n + lv, B2nv) from which it follows that

Anv B, + iv for all n _> 1. And since

d(A2n_ lv, A2nv) < kd(B2n_ v, B2nv and d(A2n + iv, A2nv) kd(B2n + v, B2nv),

we obtain that Any A + iv B + v Bnv for all n e N. Furthermore, for all n E N, we obtain

d(A2nv, A2n- 1A2n + v) <_ kd(B2nv, B2n 1A2n + v) kd(A2nv, A2n A2n + v)

and d(A2n v, AnA2n +

Therefore we obtain u An(u Bv(u for all V > setting u Any because 0 < k < 1.
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Now we shall prove that u is a unique common fixed point of {At, and {Bt,}. If there exists

another point w such that w A,w Bow for all p > 1, then

d(u,w) d(A2m_ lU, A2mw) < kd(B2m_ lU, B2mw)

<kd(u,w),

which is a contradiction since 0 < k < 1. Therefore u is a unique common fixed point of two

sequences of self-mappings {A,,} and {B,}. This completes the proof.
If S B:n_ and T B2n(n 1,2 ), we obtain Theorem as the corollary of Theorem A.

Next we obtain the following theorem which is a generalization of Theorem in [4].
THEOREM B. Let (M,d) be a complete metric space and let {Tp} (p 1,2 be a sequence of

mappings from M to M. Suppose that the following conditions as satisfied for all m > n > and

x, yE M

(e) there exists a constant h (h > 1) such that

d(T2n_ az, T:ny) > hd(x,y) and d(T:nz, T2m + lY) > hd(z,y),

(f) TpTq TqTp (p,q are even or odd respectively).

If every T is continuous on M and Tn(M M(n 1,2 ), then there exists a unique fixed point

for T,.
PROOF. Set A,=I (I is the identify map from M to M) in Theorem A. The proof is

complete.
REMARK 1. We remark that the mapping f: X x in Theorem 1 of [4] is continuous from

the condition of the theorem.
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