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ABSTRACT The purpose of this note is to extend Warner’s idea of

"bornological structures" to cover non-locally convex situations and to

develop a framework unifying several variations on an ultrabornologlcal

theme for example, ultrabornological spaces, o-ultrabornological spaces,

i-ultrabornological algebras). We do this by first generalising the concept

of a "structure" on a vector space as defined by Warner.
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1. ODDTION

In [i0], Warner developed a framework with which various "bornological

concepts" can be unified and properties of the several variations on a

bornological theme (for example, bornological spaces, o-bornological spaces, i-

bornological algebras) may be derived from results established within this

general framework. Recently, these variations have been extended in the setting

of non-locally convex spaces and algebras (see, for example [3]. [7], [8]). In

this paper, we have sought to extend Warner’s ideas to cover the non-locally

convex situations. In Section 2, we have generalised the concept of a

"structure" on a vector space as defined by Warner in [i0] and have given some

basic properties of B-ultrabornological structured spaces. In Section 3, we

briefly discuss the structured *-inductive limits of a family of structured

topological vector spaces. Finally, we give examples of various structures both

convex and non-convex, and have been able to fit into our general framework

ultrabornological spaces, o-ultrabornological spaces and i-ultrabornological

algebras.
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2. SItUCTORED SPACES

DEFINITION 2.1 Let E be a vector space and let V be a collection of
balanced subsets of E. Then V is said to be a structure on E if the following
conditions are satisfied.

(i) is a filter base on E.

(ii) E, {o) .
(iii) For each AeW, there exists a sequence {An} (n i, 2 ...) in W such

that A, + A = A,

An+! An+, = A (n i, 2 ...). (The sequence {An} is called a efininK .sequenc
for A).

The above generalises the concept of a structure on a vector space as defined
by Warner in [i0]. Every suprabarrel defines a structure on a vector space; for
if W is a suprabarrel in a vector space E, with a defining sequence {V,), then
the collection W {V, {o}, E, V, (n I, 2 )} defines a structure on E.
Thus, the above definition generalises the notion of a suprabarrel in a vector
space.

DEFINITION 2.2 A structured sDace is a pair (E,V) where is a structure
on E.

DEFINITION 2.3 A linear topology on a structured space (E, is said
to be compatible with _, if V contains a base of -neighbourhoods of the origin.

A structured topological vector space is a triple (E, , T) where (E, is a

structured space and T is a linear topology on E compatible with V.

Every linear topology on a vector space E, with a -nelghbourhood base

at the origin, gives rise to a structure on E, with which it is compatible.

will consist of E, {o}, , and T is the finest linear topology on E compatible

with . is called the structure associated with . Conversely, there is

always at least one linear topology on E compatible with any given structure,

namely, the topology whose only open sets are E and ., When no confusion arises,

a structured topological vector space (E, , ) is denoted simply by E.

DEFINITION 2.4 If (E, 9 and (F, 9 are structured spaces, then a mapping

f of E into F is said to be a structured homomorDhism is f is a linear mapping,

and f ( = Wand f-1( = V.

Clearly, the composition of two structured homomorphisms is a structured

homomorphism. If f is a linear mapping from a structured space (E, onto a

vector space F, then F, f(9 is a structured space. Similarly, if f is a

llnear mapping from a vector space E onto a structured vector space (F, ), then

f-() is a structure on E.

Let (E, ) be a structured space and suppose that B is a collection of

subsets of E.
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DEFINITION 2.5 We say that a subset V of E is B-bornivorous if V e V and

has a defining sequence {V,} in V such that each V= is absorbing and also absorbs

each B e B.

DEFINITION 2.6 Let (E, F, T) be a structured topological vector space.

Then E is said to be a B-ultrabornoloKical structured space if each member of B

is T-bounded and every B-bornivorous subset of E is a T-neighbourhood of the

origin.

We note that if (E, F, T) is B-ultrabornological and if Wis a structure on

E weaker than F, (i.e.) if W = , but with which T is compatible, then (E, W, T)

is also B-ultrabornological. In the following we define two concepts connecting

a linear mapping and the class of subsets B.

DEFINITION 2.7 Let (F, ,) be a topological vector space. A linear mapping

f from E into F is said to be B-ultrabornoloKical if, for every -neighbourhood

W of o in F, f-l(W) contains a B-bornivorous subset.

We now consider some general properties of B-ultrabornological structured

spaces.

PROPOSITION 2.8 Let (E, T) and (F,) be two structured topological

vector spaces, f a llnear mapping from E into F, and B a class of T-bounded

subsets of E. If f is continuous, then f is B-ultrabornological, and if f is

B-ultrabornological, then f is B-bounded. If f is a structured homomorphlsm,

then f is B-ultrabornological if and only if f is B-bounded.

PROOF. If V is a -neighbourhood of o in F, f-l(V) is a T-neighbourhood

of o in E, and so a B-bornlvorous subset. Hence f is B-ultrabornologlcal.

Secondly, if W is a ,-neighbourhood of o in F, then, since f is

ultrabornological, f’l(W) m V, where V is a B-bornivorous subset of E. Thus, for

each B 6 B, there exists a > o such that B = V = f-! (W); that is, f(B) u i
W which implies that f(B) is ,-bounded. Thus f is B-bounded.’ The last part of

the Proposition is straightforward.

THEOREM 2.9 Let (E, T) be a structured topological vector space and

B a class of T-bounded subsets of E. Then the class of all B-bornivorous subsets

of E is a base of nelghbourhoods of the origin for a linear topology T* on E

compatible with V. T* is finer than T and each B 6 B is T*-bounded. (E, , T)

is B-ultrabornological if and only if T T*. Also, if f is a structured

homomorphism from E into any structured topological vector space F, then f is B-

bounded from (E, T) into F if and only if f is continuous from (E, T*) into F.

PROOF. Clearly the family of all B-bornivorous subsets {Ui} (i 6 I) is

a filter base on E such that contains ft. Also, be definition, each Ui 6 is

a suprabarrel. Therefore, by Proposition 2.2 of [6] is a base of

neighbourhoods of o for a linear topology T* on E and it is clearly compatible

with . Since each T-neighbourhood is a B-bornivorous subset, T is coarser than
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*. Moreover, every B-bornivorous subset absorbs each B B implying that

elements of B are *-bounded. It is evident by Definition 2.6, that (E, F, )

is B-ultrabornological if and only if *. The last assertion follows easily

from Proposition 2.8

THEOREM 2.10 Let (E, F, ) be a structured topological vector space and

B a class of v-bounded subsets of E. Then the following conditions are

equivalent.

(i) E is a B-ultrabornological structured space.

(ii) Every B-ultrabornological linear mapping from E into any

topological vector space is continuous.

(iii) Every B-bounded structured homomorphism from E into any structured

topological vector space is continuous.

(iv) If T1 is any topology on E compatible with V such that the identity

mapping from (E, ) onto (E, I) is B-bounded, then it is

continuous.

(v) is finest of those topologies on E compatible with V and for

which each B 6 B is bounded.

PROOF. (i) (ii). Since E is a B-ultrabornological structured space,

every B-bornivorous subset of E is a v-neighbourhood of the origin and so implles

(li).

(li) (ill). This follows from Proposition 2.7.

(iii) (iv). This is trivial.

(iv) (v). If I is topology on E compatible with W and for which each

B 6 B is Tl-bounded, then the identity mapping from (E, T) onto (E, TI) is B-
bounded and thus continuous by hypothesis. Hence T is finer than

(v) (i). By Theorem 2.8, T* is compatible with W and each B e B is bounded

for T*. Hence as T is coarser than T*, by hypotheses T * and so E is a

ultrabornological structured space.

CORALLARY. Let (E, F, T) be a structured topological vector space and B,
a class of T-bounded subsets of E. Then E is B-ultrabornological if every B-
bounded llnearmapplng into any structured topological vector space is continuous

and conversely.

PROOF. If E is B-ultrabornological, then since (i) (ill), it follows

that every B-bounded llnearmapping into any structured topological vector space
is continuous. Conversely, if every B-bounded linear mapping into any structured

topological vector space is continuous, then in particular the identltymapping
is continuous and so (iv) implies (i), as required.

We conclude this section with some remarks on the quotient and product

structures.

REMARK (i). Let (E, be a structured space, F a subspace of E and
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the canonical mapping $: E E/F. Since $ is a onto linear mapping, by the

remark made after Definition 2.3, $( is a structure on E/F. If is a topology

on E compatible with V, then it is easy to see that the quotient topology, $(7)

say, on E/F is compatible with $(. $( is called the uotient structure on

E/F.

REMARK (ii). Let (E, , ) (i e I) be a family of structured

topological vector spaces and E be the product space H Ei, and be the product

topology on E. For each i6I, let Ji denote the injection mapping from El into

E. Consider the collection F of all balanced subsets V0 of E such that V0 has

a defining sequence of balanced subsets {V=} (n i, 2 in E with the

property that J-! (V=) e for each i61 and n 0, I, 2 Then it is not

difficult to show that F is a structure of E and that T is compatible with F.

F is called the product structure on E.

3. STRUCTURE *-IDTIVE LIMITS

In this section, we consider the *-inductive limits of a family of structured

topological vector spaces. In detail, we have the following situation. Let, Ti) (i6I) be a family of structured topological vector spaces, (E, ) a

structured space, and, for each ieI, suppose that gi is a structured homomorphism

from El into E such that E u E (El)- The set of all topologies on E

compatible with F relative to which each El is continuous is not empty, since it

contains the trivial topology. Hence there is a finest such topology T on E.

DEFINITION 3.1 The topology v as defined above is called the structured
*-inductive limit topology on (E, relative to the structured topological

vector spaces {El} and the structured homomorphisms {L} (i6I); (E, T) is

called the structured *-inductive limit of (El, , 7i) with respect to

EXAMPLE i. Let (E, , ) be a structured topological vector space, F a

subspace of E and the canonical mapping of E onto E/F. Let ( and (T) be

the quotient structure and quotient topology on E/F respectively, then (EF,

(, (T)) is the structured *-inductive limit of (E, 7) with respect to

EXAMPLE 2. Let (EL, , i) be a family of structured tpologlcal vector

spaces. Let E E E be the direct sum of the vector spaces El, with the

structure V induced by the product structure of H Ei. The structure *-inductive

limit topology on (E, ) with respect to the structured topological vector spaces

(EL, , Ti) and the structured homomorphisms {Ji} (ieI) is called the structured

*-direct sum topoloK7 on (E, ).

Let {(El, , i)} (i6I) be a family of structured topological vector spaces

where is the general linear structure (see 4 example 6) on each Ei. Let (E,

be a structured space with F the general linear structure on E, and suppose
that {El} is a family of structured homomorphisms gi:Ei E such that E

(E). Then the structured *-inductive limit topology on (E, $ coincides with

the *-inductive limit topology on E as defined by Iyahen in [3].

By modifying the structures (see 4) and in the obvious way, we can in

a similar manner arrive at the notions of algebraic *-inductive limits and o-*-

inductive limits discussed in [8], [7].
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THEOREM 3.2 Let be the structured *-inductive limit topology on the

structured space (E, ) with respect to the structured topological vector spaces

(El, , i) (iEl) and structured homomorphisms {El}. Then V E V is a -neighbourhood of o in E if and only if V has a defining sequence {Va} of

absorbing sets in V such that Ei’l(Va) is a i-neighbourhood of o in El for n

i, 2 and for each il.

PROOF. This is similar to the proof of Theorem 3.2 of [8].

COROLLARY. If f is a structured homomorphism from E into any structured

topological vector space F, then f is continuous if and only if foEi is

continuous for all iel.

THEOREM 3.3. Let E be the structured *-inductive limit of structured

topological vector spaces {E} (il) with respect to the structured homomorphisms

{E}- If E is Bi-ultrabornological for each iel, and B is a family of bounded

subsets of E containing the family of subsets {i(Bi):BiEBi, iel} then E is B-

ultrabornological.

PROOF. Let t be a B-bounded linear mapping from E into any structured

topological vector space (F, , B). For each i61, g is continuous and so, by

Proposition 2.7, is Bi-bounded. As B contains the family {EI(Bi) B 6 Bt i6I}

it is easy to check that toEi is a Bi-bounded linear mapping from El into F.

Since E is Bi-ultrabornological for each iEl, by Corollary to Theorem 2.10, toEi
is continuous from El into F for each iI, and so it follows that t is continuous

by Corollary to Theorem 3.2. A repeated application of the Corollary to Theorem

3.2 shows that E is B-ultrabornological.

4. EXAMPLES

We describe three different classes of structure which fit naturally with the

general patterns we have developed here. First we consider convex structures;

these (except 3) were introduced in the first instance by Warner in [10].

(1) Let E be a vector space and let C be the collection of all non-

empty convex, balanced subsets of E.

(2) Let A be a linear associative algebra and let C be the collection

of all scalar multiples of all non-empty balanced, convex,

idempotent subsets of A.

(3) With A as above, let C be the collection of all scalar multiples

of all non-empty balanced, A-convex subsets of A.

(4) Let (E, C) be a partially ordered vector space and that C4 be the

collection of all non-empty balanced, convex and order-convex

subsets of E.

(5) Let (E, C) be a vector lattice and let C be the collection of all

non-empty convex, solid subsets of E.

In each of the above cases, C, (i 1, 2, 3, 4, 5) defines a structure on

E or A as the case may be. If A is a linear associative algebra C2 = C3 = CI and

if E is a vector lattice C = C4 = Ci. C (i 1, 2, 3, 4, 5) are, respectively,

called the convex linear structure, convex algebraic (ointly multipicativel
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structure, convex alRebraic..(separately multiplicative structure, convex order

structure, and convex lattice structure. The topologies compatible with Ci (i

i, 2, 3, 4, 5) are respectively locally convex topologies, locally m-convex

topologies (Michael [5]), locally A-convex topologies (Cochran et al [i]),

locally o-convex topologies (Kist [4]), locally convex solid topologies (Wong and

Ng [ll]). The bornological properties of the structure Ci (i i, 2, 4, 5) have

been discussed by Warner [i0] and 3 by Cochran [2].

If in the collections of subsets given by Ci (i I, 2, 3, 4, 5) above, we

replace convex by p-convex (o < p < i) then we get the corresponding p-convex

structures. These may be regarded as the straightforward generalisations of

Warner’s scheme.

We now introduce the notion of general structures on vector spaces and

algebras.

(6)

(7)

(8)

Let E be a vector space and let be the collection of all non-

empty balanced subsets V of E such that each V has a defining

sequence consisting of balanced sets. Then defines a structure

on E which we call the Keneral linear structure. Clearly

contains the collection of all suprabarrels in E. It follows that

every linear topology on E is compatible with . Let (E, , )

be a structured topological vector space with , the general linear

structure. If is the class of all -bounded subsets of E, then

E is -ultrabornological if and only if E is ultrabornological

([3],p.298). If B , then E is -ultrabornological if and only

if the topology of E is the finest linear topology on E. ([6]).

Let A be a linear associative algebra. The collection V of all

non-empty balanced, idempotent subsets of A each of which has a

defining sequence of balanced, idempotent subsets, defines a

structure on A. is called the Keneral alKebraic structure on A.

The family of all i-suprabarrels (see [8]) is a subset of V2 and so

the topologies on A compatible with are precisely locally

idempotent topologies on A [8]. If A is a idcally idempotent

algebra with the general algebraic structure and is the class of

all i-bounded sets (see [9], p.197), then A is B-ultrabornological

if and only if A is i-ultrabornological ([8]). If is the null

set, then A is -ultrabornological if and only if the topology of

A is the finest locally idempotent topology on A.
Let (E, C) be a partially ordered vector space. The collection
of all non-empty balanced, order-convex subsets V of E such that
each V has a defining sequence consisting of balanced order-convex
subsets, is a structure on E. is called the eneral order
structure on E determined by the given partial ordering. Every
positive linear mapping from E into any partially ordered vector
space F is a structured homomorphism with respect to the associated
general order structures. Every o-suprabarrel of E belongs (see

[7]) and so the locally order-convex topologies on E are compatible
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with . Let be a locally order-convex topology on E. If B is

the class of all -bounded subsets of E, then E is a B-

ultrabornological structured space if and only if E is an o-

ultrabornological space (see [7]). If B , E is B-

ultrabornological if and only if is the finest locally order-

convex topology ([7]).

I wish to thank Dr K. Rowlands for his helpful comments and suggestions.

KNCES

i. Cochran, A.C., Williams, C.R. and Keown, R. "On a class of topological

algebras," Pacific J. Math., 34, (1970), 17-25.

2. Cochran, A.C. "Inductive limits of A-convex algebras," Proc. Amer. Math.

Soc____., 3__7, (1973), 489-496.

3. Iyahen, S.O. ’On a certain class of linear topological spaces," Proc.

London Math. Soc., (3), 18, (1968), 285-307.

4. Kist, J. "Locally o-convex spaces," Duke. Math, J., 25, (1958), 569-582.

5. Michael, E.A. "Lpcall7 multlplicativel7 convex topoloRical alebras,"

Mem. Amer. Math. Soc., iI, (1952).

6. Murali, V. "Suprabarrels in topological vector spaces," Math Japonica,

32(5), (1987), 797-800.

7. Murali, V. "Locally order-convex spaces," Kyungpook Math. J., 18(1),

(1978), 37-46.

8. Murali, V. :Locally idempotent algebras,’ Math Japonica, 30(5), (1985),

763-776.

9. Warner, S. "Inductive limits of normed algebras," Trans. Amer, Math.

Soc.__c, 8__2, (1956), 190-216.

i0. Warner, S. "Bornologlcal structures," Illinois J. Math., 4, (1960), 231-

245.

11. Wong, Y. and Ng, K. :artiali7 ordered topol?glcal vector spaces,"

Oxford Math. Monographs, (1973).


