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ABSTRACT. This present paper is concerned with two main conditions,that of normality of a

lattice, and separation and semi-separation of two lattices,both looked at using measure theoretic

techniques.We look at each property using {0,1 two valued measures and associated {0,1
valued set functions.

For normal lattices we look at consequences of normality in terms of properties of their

measures and closely allied set functions.For separation and semi-separation of two lattices,we

investigate the realtionship between regular measures of both lattices, define the notion of weak

going up and look at this notion in terms of separation and semi-separation.We then give necessary
and sufficent conditions for semi-separation in terms of equality of two set fuctions, derived from

regular measures on the smaller lattice on the larger lattice.
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1. INTRODUCTION

In this paper we consider necessary and sufficent conditions for a lattice of subsets of an

abstract set to be normal,in terms of measure theoretic conditions.We also consider conditions

when two lattices separate or semi-separate each other,again using measure theoretic methods.

In the first part of the paper,we consider consequences of a lattice L of subsets of an

abstract set X being normal.This is is equivalent as is well known ,(and which we prove), to each
element of IxeI(L),the set of non-trivial finitely additive{ 0,1 two valued measures having a unique
regular extension velR(L) st v>l.t (L).We then extend this work to look at relations with various

classes of measures I$(L),IW(L), set functions kt’,kt",and side conditions on the lattice such as

cg,, and look at necessary and sufficent conditions that a lattice of subsets have the normal

property.

In the second part of the paper we investigate when two lattices L1 ,L2 of an abstract set X

L2_L1 ,L1 either separates or semi-separates L2,as well as consequences of separation or semii-
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separation of two lattices.We again, investigate these properties in some detail in a measure

theoretic setting,where they are equivalent to the existence and uniqueness of extensions or

restrictions of regular measures on the two lattices.

We also include a section on notation,terminology ,basic backround,and references for the

readers convenience.In addition other notions are introduced as needed in the sections in which

they occur.

2. BACKROUND AND NOTATION

We begin by reviewing some notation and terminology which is fairly standard (see,for

example, Alexsandroff [1], Camacho [2], Grassi [3], and Szeto [4]).We supply some backround

and notation for the readers convenience.

Let X be an abstract set and L a lattice of subsets of X st J,XeL.A delta lattice is one that is

closed under countable intersections,and the delta lattice genereated by / is denoted 5(t-) .A lattice

is complement generated iff for every Le/there exists a sequence of subsets Anet_ n= 1,2 such

that L=An’(’ denotes complement). I. is countably paracompact if for every sequence Lnel. and

Ln,], then there exists Ln"/ st Ln"_Ln and Ln-’$.A tau lattice is one that is closed under

arbitrary intersections,and the tau lattice generated by / is denoted :L.
Let I(L) denote the set of non-trivial two valued {0,1 fintely additive measures on the

algebra A(L) generated by {k}.Also let teI(o*,t-) denote those elements of I(k) that are sigma-
smooth on I_,i.e. Lnet- Ln,I,o ,laeI(*,l) then limla(Ln)=0.I$(k denotes those elements of

I(*,k) such that if Lnek I.teI$(/),Ln,l,, and Ln=Le/then la(L)=limla(Ln)" I(o,k) will denote

those measures that are sigma-smooth on A(t.),i.e. if AneA(/) An,l,J then liml.t(An)=0. Note that

this is equivalent to countable additivity.IR(L) will stand for those measures on A(L) that are l..-

regular on A(t.) ,i.e.I.t:IR(L) then for AeA(L)/.t(A)=sup{bt(L): LeL,A_L}.IR(o,L) denotes those

measures in I(o,L) that are k regular. The obvious relations hold

I(L)_I(o*,L)_I$(L)_I(o,L)_IR(o,L) and I(L)_IR(L).
A lattice is said to be disjunctive if for any xeX and Let. such that x L then there exists a

LleL st xeL1 and LLI=O.A lattice is said to be normal if for L1,L2eL and LlL2=O,there
exists L3,L4eL such that L3’_L1 L4’_L2 and L3’L4’=O.A lattice is said to be T2 if for x,yeX
there exists L ,L2eL such that xeL I’,yeL2’ and L ’L2’=O

A fact we will use throughout this paper is that there exists a 1-1 correspondence between

prime L-filters and elements of I(L),and a one to one correspondence between L-ultrafilters and

elements of IR(L).This correspondence is set up by letting bmI(L) and H={LeL la(L)= }.Then H
is a prime L-filter and conversely if H is a prime L-filter there exists a measure associated with H
such that if LeH (L)=I. A similiar correspondence holds for H and bielR(L) in which case H is

an L-ultrafilter.
We define l.t_<v (L) for v,l.t:I(I..) if bt(L)<v(L) for all LeL.We nov,, prove two results that will

be useful in the sequel:
THEOREM 2.1: Let L be normal and countably paracompact,then if btgI(o*,L) there exists a

unique btlelR(6,L) such that bt_<bt (L).
Proof: Let btI(*,L) and/.tlelR(k) such that bt<_btl (l_).Then we must prove that btlelR(o,l_).Let

{An}el- An$O.Since L is countably paracompact there exists {Bn’}such that Bn’,LO,BncL,and
Bn’_An for every n.Since Bn’_An and L is normal and AnBn=O,there exists Cn,DneL such

that Cn’_An Dn’_Bn and Dn’Cn’=O.Then Bn’_Dn_Cn’An and we can assume without loss

of generality that these inclusions hold with Dn$O.Then bt (An)-<btl(Cn’}-<bt(Cn’-<(Dn) ,and

since Bn’$O Dn$O plus the fact eI(*,L) imply that limbt(Dn)=0 as n--9oo.Then btl(An)=0 as

n--oo and btlglR(cr, L).Unqueness follows from normalitv.
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THEOREM 2.2:.If the lattice !. is complement generated,it is countably paracompact.
Proof: Let {An}.I,O AneL. and An=cLni’ =1,2 LnieL.. Since An,l,O Bn’=oLmi’ both and

m go from to n,Bn’,l.o Bn’eL.’ Bn’An.Thus L. is countably paracompact.

Now consider various sets of measures defined on the algebra generated by the lattice L..For
example consider I(L),I(c*,L.),IR(L.) and IR(c,L.).Denote such sets by I.Also consider the

collection of sets H(L.) where H(L.)={H(L) LEL.} and H(L)={II I.t(l_,)=l }.Then the following
hold: a) H(AuB)=H(A)uH(B) A,BeL..b) H(AoB)=H(A)H(B) A,BeL..c) H(A’)=H(A)’ AeL..d)
IfAB then H(A)H(B) A,BeL.. e) If L is disjunctive (if necessary) and H(A)H(B) A,Bel. then

AB.f) The collection H(L.) is a lattice and H(A(L.))=A(H(L.)).
We will assume in discussing H(L) for convenience, that / is disjunctive ,although it will be

clear that this assumption is not always necessary.
If laeI then define a measure on A(H(L.))I.t^eI(H(L.))by Ft^(H(A))=I.t(A) for

AeA(L.).Conversely if for I.t^eI(H(L.)) define a measure on A(L.) I.teI by I.t(A)=I.t^(H(A))
H(A)eA(H(L.)) .Then the following hold:

THEOREM 2.3: If L. is disjunctive (if necessary) then there exists a 1-1 correspondence
between the sets and I(H(L.)) given by I.t(-l.t^.Further FteI is (-smooth or L.-regular iff

I.t^eI(H(L.)) is c-smooth or H(L)-regular.

If I=IR(L.) we let H(L.)=W(L).
If I=I(L) we let H(L)=V(L.).
If I=I(c*,L.) we let H(L.)=V(cr,L).
If I=IR(c,L.) we let H(L.)=W(c,L.).

3. ON NORMALLATYIC’F
In this section we extend the work of Eid [5].and Huerta [6],and consider further

consequences of a lattice being normal as well as new equivalent characterizations of

normality.First we have the following measure theoretic characterzafion of normality:
THEOREM 3.1: A lattice L. is normal iff for I.teI(L.) and Vl,v2elR(L.) st I.t<Vl (L.) t.t<v2 (L.)

implies that v l=V2.
Proof: Let L be normal.Assume that for I.teI(L.) there exists Vl,v2elR(L) st I.t<Vl (L.) ,I.t%v2 (L.)
and v v2.Then there exists L eL. v (L )= v2(L1)=0.Since v2elR(L.) there exists L2eL. L ’L2
and v2(L2)=v2(Ll’)=l and LlL2=O.Since L. is normal there exists L3,L4eL. st L3’L1,
L4’L2 and L3’L4’=O.Since Vl (L1)=I this implies that Vl (L3’)=l,nd v2(L2)---1 implies
v2(L4’)=l.Thus I.t(L3’)=la(L4’)=l since I.t>Vl (L.’) and la->v2 (L.’). Then la(L3’L4’)=l,but
L3’c’d.,4’=O implies that I.t(L3’c’4.4’)---O,a contradiction .Therefore Vl =v2.

Conversely let I.teI(L.) Vl,V2elR(L.) I.t_<Vl (L.),l.t<v2 (L.) imply that Vl=V2,and assume that L.
is not normal.Then there exists L1,L2eL. st L L2=O and any L3’L L4’L2 L3,L4eL. imply
that L3’L4’O.Let H={L’ L’L1 or L’L2}.Since H has the finite intersection property and
forms a filter base there exists a prime L-filter containing H and an associated measure peI(L.’) st
Ft(L’)=I L’eH.Look at I.t(L5)=l L5eL. then I.t(L5’)=0 and
L5’ does not contain L1 thus LIL5O.Since the collection of all such L5 ’s has the tip there
exists a measure I.tlelR(L) st I.t<l.t (I.) and Ftl(L1)=I.By similiar reasoning there exists a
I.t2elR(L) st I.t<l.t2 (L.) and la2(L2)=l. By hypothesis Vl=v2.But then vl(L1)=v2(L2)=l or
v (L1c’L2)=1.But L1("J-,2=O,thus v (L L2)=0,a contradiction.t, must be normal.
DEFINITION 3.1:.A lattice L. is said to be countably compact (cc) if for any countable collection of
elements in the lattice {Ln }eL. and Ln=O n--l,2 then there exists a finite subindexing st
CLni=O i=1,2 N.This is equivalent measure theoretically to the condition that if I.tei(L.) then
I.teI(o*,L).
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Definition 3.2: A lattice I_ is almost countably compact (ace) if I.telR(L’) implies that I.tel(*,L).
We then have the following theorem.

THEOREM 3.2:_If L is normal and cp then L is cc iff L ace.

Proof: Assume L is cc,then let I.telR(L’) which implies that I.tel(L) .But since L is cc this implies

that I.td(t*,L).(Note L cc implies / ace without any other conditions on the lattice).Conversely let

L be normal cp and ace.Then let I.mI(L).This implies that laeI(L’) and since every filter is contained

in an ultrafilter ,there exists an associated velR(L’) st I.t< v (L’) or Iv (L).Since L is ace

veI(t*,L) ,and also since L is normal and cp there exists a vlelR(o,L) st V<Vl (L). Thus because

L is normal this implies that v<l.t<Vl (L) ,IxeI(*,L) and L is cc.

THEOREM 3.3: If L is normal,and if I.teI(o*,L) velR(L),l.t<v (L) then veI(t*,L’).
Proof: Assume not then there exists AneL {An’},l,O and v(An’)=lall n.Since velR(L) there exists

BneL st An’Bn and v(Bn)= all n.Without loss of generality we can assume that {Bn},l,O since

{An’},l,o and An’;Bn all n.Since L is normal there exists Cn,DneL st Cn’;Bn Dn’An and

Cn’cDn’=O all n. v(Bn)=l all n, I.t(Bn)---0 n>N because I.teI(t*,l..) v(Cn’)=l.t(Cn’)=l since

Cn’Bn v(Bn)=l all n and Ix>v (L’).Now An’DnCn’;Bn and since {Bn},l,o {An’},l,O then

{Dn},l,O and because lxeI(t*,L),I.t(Dn)=0 for n>M.Then since DnCn’l.t(Cn’)=0 n>M,a

contradiction.Then veI(o*,L’).
THEOREM 3.4: Let L be cg and normal,and I.teI$(L) then l.telR(L).

Proof: Suppose I.teI$(L) and L cg normal.Let velR(L) be such that I.t<v (L).If l.tv there exists

AeL st I.t(A)=0 v(A)=I.A=cAn’ n=l,2 Ariel by cg property.But L is normal and

AnCA=O.Therefore there exists Cn,BneL st Cn’;A Bn’An and Cn’cBn’=O all n.v(An’)=l all

n since An’A.Also I.t(An’)=l all n since v<-kt (L’) .Now I.t(Bn)=l all n since Cn’A all n

,v(A)=l,thus v(Cn’)=l all n,l.t>v (L’) and BnCn’ all n.But An’;BnCn’A which implies

A=Bn n=l,2 and since t.mI$(L) l.t(A)=l,a contradiction.t.telR(L) and IR(L)I$(L).
THEOREM 3.5:_Let L be cg,and I.teI(o*,L’) then I.teIR(L).

Proof: Let IXeI(t*,L’) and let I.t(L’)=l LeL.Since L is cg L=cLi’ i=1,2 L’=Li.Now
O=L’L=L’c3(cLi’) and thus An’=L’c(Li’) i=l,2...n An’eL’ {An’},l,O. Since laeI(cr*,L’)
limlx(An’)--0 or Ix(An’)--0 for n>N or I.t(An)=l n>N.An=L(Li) i=1,2 n I.t(L)=0, which

implies that I.t(Li)=l, wLiel_ for i=1,2 n.L’tLi i=1,2 n ,thus laeIR(L).
If L is cg and normal then I$(L)_IR(o,L)::gI$(L) by theorem 3.4 and I$(L)=IR(cLL). Lcg

implies that L is cp so I(cr*,L)I(cr*,L’) holds by theorem 2.2.In addition from theorem 3.3,if L
is also normal I(cr*,L)_I(t*,L’)IR(tLL) ,clearly I(t,L’)IR(t,L)’. Also by theorem 3.5 if !. is
normal and cg IR(L)I(o*,L’) or IR(o,L)2I(o,L’).Thus if L is cg and normal

I(,L’)=IR(cLL)=I(t,L).
DEFINITION 3.3:_Let ).mI(L) XE then I.t’(E)=inf{l.t(L’) L’E }.
DEFINITION 3.4: IW(L) consists of those I.teI(L) st la(L’)=l implies that L’L1,where LleL and

)x’(L1)=I.
THEOREM 3.6:_Let L be normal then IR(L)=IW(L).

Proof: First it is clear that IW(L)_IR(L) thus only need to prove IR(L):::>IW(L).
Let I.teIW(L) and I.t(L’)=l.t’(L’)=l LeL,then there exists a L3eL st L’:::)L3 and I.t’(L3)=l.Since L
is normal and L3oL=O there exists L1,L2eL st LI’L,L2’L3 and Ll’L2’=O.This implies

that X=LltoL2.Assume that I.t(L2)=l then I.t(L2)=l.t’(L2)=l.Thus I.t(L2’)=i.t’(L2’)=0.But L2’L3
and I.t’(L3)= 1,a contradiction.Therefore I.t(L2)=0 and I.t(L 1)= 1,and L’L .Thus one must have

IelR(L) ,IR(L)IW(L),and IR(L)=IW(L) if L is normal.

DEFINITION 3.5:_Let I.tEI(t*,L),E st XE then I.t"(E)=infEI.t(Li’) i=1,2 st toLi’::)E and

LieL.
Note that It" is an outer measure.
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THEOREM 3.7:_Let IXeI(o*,L), then It’=Ix" on L’ iff IxeI$(L).
Proof: Let IxeI(o*,L) and Ix’=It" on L’.Also let oAn,I,A8L AneL n:l,2 .Assume Ix IS(L)
and let the above sequence OAn,I,A be such that Ix(An)=I all n and Ix(A)----0.Then Ix(A’)=I and

Ix(A’)=Ix’(A’)=Ix"(A’)=I by hypothesis.But Ix"(A’)=It"(tAn’)_<EIx(An’)=0 since Ix(An’)=0 all n,a

contradiction.Ix8I$(L).
Conversely let IxeI$(L).Clearly Ix"_<It’ on L’.Let Ix"(L’):0 I_L then there exists uLi’ LieL

i=1,2 st EIx(uLi’)=0 or Ix(Li’)=0 all i,or Ix(Li)=I and LtLi i=1,2 **.Thus one has that

L=c(LuLi) LLieL and Ln=(LLi) i=1,2 n LneL and Ln,l,L.This implies that

Ix(L)=infIt(LLi)=infl=l since IteI$(L).Then It(L’)=Ix’(L’)=I.t"(L’)=0 and Ix’:It" on L’.
THEOREM 3.8: If II$(L) ,and if L is cg then IXIW(L).

Proof:_Suppose that LeL and Ix(L’)=It"(L’):l.Then from the previous theorem 3.7

Ix"(L’)=l.Since L is eg then L’=Li Li8L i=1,2 and l=Ix"(uLi)_<ZIx"(Li).Thus Ix"(Li)=I for

some and since Ix_<It _<It on L Ix’(Li)=I L’:Li thus IteIW(L).
From theorems 3.6,3.7 and 3.8 we have that IR(L)=IW(L):I$(L) or I$(L):IR(o,L) if L is eg

and normal.This gives a second proof of this fact.
THEOREM 3.9: If L is normal and if Ix_<v on L ItI(L) veIR(L) then v(L"):l LeL implies there

exist L-eL L’I.;- and Ix(L--)=l.Conversely this condition implies that L is normal.
Proof:_Let L be normal ,I.t<v (L) IXeI(L) veIR(L) and let v(L’)=I for LeL.Assume that for L’:L
LleL Ix(L1)=0 for all such L1.Then look at H:{LI’ LI’L} then for all such LI’8H
Ix(LI’)=I,LleL.Then if Ix(L1)=I then Ix(LI’)=0 and thus L1’ does not contain L so that

L nLO.The collection of all such L has the tip ,and thus there exists a ultrafilter and its

associated measurev28IR(L), st Ix-<v2 (L) .Since L is normal v=v2 and since v(L’):l v(L)---0.But
because v2 is an ultrafilter containing all such L1 st Ix(L1)= which is a filterbase and all such L1
have non-empty intetseetion with L v(L)=l,a contradiction.Thus there must exist a L st L’:L1
It(L )= L eL when v(L’)=1.

Conversely suppose L is not normal then there exists L1,L2eL st L1L2=O but there does not

exist L3,L4eL st L3’L1, L4’L2 and L3’L4’=.Then H={L’ L’:L1 or L’L2} has the fip

and thus there exists a prime L-filter containing H and an associated measure IteI(L’) st Ix(L’)=I
L’eH. Look at at It(L5)=l L5eL then Ix(L5’)---0 and L5’ does not contain L1 thus LlL5.Since
the collection of all such L5 has the fip .there exists a ItleI(L) st Ix<l.tl (L) and Itl(L1)=l.By
similiar reasoning there exists a Ix2eI(L) st I.t<it2 (L) and Ix2(L2)=l.But since every filter is
contained in an ultrafilter there exists Vl,V2elR(L) st Ix<_ixl<V and It<Ix2v2 (L).Now LI’:L2
L2’:L1 therefore v2(LI’)=I and vl(L2’)=l.By hypothesis there exists L5,L6eL st

LI’L5,L2’L6 st Ix(L5)=It(L6)=I, thus Ix(L5L6)=I.In addition LI’:L5L6 and
L2’L5cL6.But since It<v (L) and Ix<v2 (L),v (L5tL6)=v2(L5tL6)=1.Now v (L )= so
Vl (LlcL5L6)=I.But LI’L]scL6 thus L5tL6Ll=t thus Vl (LlcL5cL6)=0,a
contradiction.L must be normal.

Finally,we prove one further result that holds for normal lattices.
THEOREM 3.10: ff I. is normal and IxeI(L),veIR(L),and Ix_<v (L) then It’=v (L).

Proof:_Since by definition IX’(L)=infix(L4’ LI’ZL L,L4eL ,and since Ix<v (L) or v_<ix (L’) ,then
t<v<It’ (L).
Assume that vIx’ (L) then there exists LeL st v(L)=0 and Ix’(L)=l.Thus v(L’)=I and since
veIR(l.) there exists L3eL st L’L3 and v(L3)=l.Since L is normal and L3L=i,there exists
L1,L2eL st LI’L and L2’L3 and Ll’c’L2’=O.Thus since L2’L3 and v(L3)=l and v_<Ix (12)
,Ix(L2’)=1 which implies Ix(L2)--0.Also since L2LI’ IX(L 1’)=0 and LI’L.But It’(L)=inf Ix(L’)
L’L thus Ix’(L)--0,a contradiction.If t. is normal Ix’=v (L).
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4. LATrlCE SEPARATION
In this section we study and characterize separation and semi-separation between pairs of lattice

in a measure theoretic fashion,and give some applications of these results .We first give some

definitions.

DEFINITION 4.1: Let L1 ,t-2 be lattices st L2L1 .Then L1 is said to semi-separate 12 if for

L1eL and L2eL2 and L c’tL2=O,there exists a L1-eL st Ll"L2 and L c"tL1"=0.
DEFINITION 4.2: Let L1 ,L2 be lattices such that L2L1 then L1 is said to separate L2 if for

L2,L2"eL2 and L2c"d_,2~=O,then there exists L1,Ll~eL st LlL2 L1~L2~ and L -xL1"=.
DEFINITION 4.3: Let L and L2 be lattices such that L2Ll, then if IJ.eI(L2) the restriction of

to A(L1) will be noted by I.tl ,and leI(L 1).

We now proceed to look at what separation and semi-separation implies about the relationship
between IR(L1 and IR(L2).
THEOREM 4.1: Let L1 and L2 be lattices such that L2L1 and L1 semi-separates L2. Then

if veIR(L2) we have that =v (L and IJ.eIR(L ).
Proof: Let veIR(L2) and let I.t=v I(L1) then I.teI(L1 ).Assume that I.t(L l’)=v(Ll’)=l,then since

L272L1 and veIR(L2) there exists a L2eL2 st LI’L2 and v(L2)=l,also LlCL2=O.But L1
semi-separates L2 ,then there exists LI~eL1 st LI’L2 and LI’LI=O. This implies that

Ll’L1- and v(L l")l=l.t(L 1~) (L1) .Thus I.telR(L )-
THEOREM 4.2: Let L1 ,[-2 be lattices such that L2L1 and let L1 separate 1.2.Then there

exists a one to one correspondence between IR(I-1 and IR([-2).
Proof: Since separation implies semi-separation we know from theorem 4.1 that if I.teIR([-2) then

I.tl=v (L then veIR(L1) .Thus we need only prove if I.teIR(L there exists a unique veIR(I-2) st

vl= ([-1) .Assume that this is not true and thus there exists a I.teIR(I-1 and Vl,V2eIR([-2) st

vll=l.t=v21 ([-1) and Vl:V2 .Then there exists a L2e[-2 st vl(L2)=l and v2(L2)=0 say.But
v2eIR([-2) therefore there exists L2~eL2 L2’72L2" and v2(L2")=l,and L2L2~=.Since L1
separates I_2 there exists L ,L1~eL st L1;L2 and Ll~L2 and LILl~=.Also v (L1)=

v2(Ll")=1 thus l.t(L1)=Vl (L1)=1 and IJ.(LI’)=v2(LI")=I which implies IJ.(LILI")=I.But
LIL1"=t so I.t(LILl~)=0,a contradiction.v 1=v2 (L2) and thus there exists a one to one

correspondence between IR([-1) and IR([-2) if [-1 separates L2.
THEOREM 4.3:_Let I-2;[-1 ,and L1 separate I-2 then [-1 is normal iff [-2 is normal.

Proof: Assume that [-1 is normal and let L2,L2~el-2 st L2cL2~=.Since [-1 separates [-2 there

exists L1,LI~eL1 st LIL2 LI"_L2~ and LloLI~=.Now ince L1 is normal there exists

L3,L4eL st L3’72L L4’L1~.But L2L and L3’L L2 and L4’Ll~L2~,and thus this

implies that L2 is normal.

Conversely assume [-2 is normal and let I.teI(L and v 1,v2eIR(L st I.t_<v (L and I.t<_v2

([-1).Extend I.teI([-1) to veI(l.2) .We know by theorem 4.2 that since L1 separates L2 there
exists a one to one correspondence between IR(L1 and IR(L2).Thus projecting Vl,V2eIR([-1 up
onto unique elements v3,v4eIR([-2) st vl=v3l([-1) and v2=v4l([-1).Also since [-1 separates [-2
v-<v3 and v-<v4 (L2) (see theorem 4.6).Further since L2 is normal v3=v4 (L2) ,then

Vl=V2=V31=v41 (L1).This implies that L1 is noi’rnal.

THEOREM 4.4: Let L’l ,L2 be lattices such that L1 separates [-2 then veIR(L2) is L1 regular
on L2’.Conversely if [-1 semi-separates [-2 and the above condition holds for all such veIR([-2),
then 1.1 separates L2.
Proof:_Let L1 separate [-2 and let veIR([-2) and let L2ei.2 st v(L2’)=l.Since veIR(i.2) there

exists L2"eL2 st L2’L2 st v(L2")=l and L2cL2~=.Since L1 separates [-2 there exists

L1,LI~el-1 st LI_L2,LI’L2-,and LlLl’=.Since there exists a 1-1 correspondence
between IR(L1) and IR([-2) there exists a unique I.teIR(L1) st vl=l.t (L1). Since
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v(L2")=l,v(Ll")=l and LI’_LI" implies that IX(LI’)=I.But L2’LI’ and since IXelR(I-1 there
exists Let.1 st L2’LI’L and Ix(L)=v(L)l.Therefore veIR(L2) is t. regular on I-2’.
Conversely let L1 semi-separate I.2 and let all veIR(t.2) be L1 regular on L2’.Assume that L1

does not separate L2.Then there exists L2,L2"eL2 st L2cL2~=,but LIL2,Ll’L2- has that

LILI": for all such L1,Ll~.Then H={L L_L2 or L_L2... Lel_l has the fip and there exists

a associated measure and thus a regular measure on t.1 st IX(L)=I for LeH and IXeIR(I-1) .Since

L1 semi-separates L2,LnL2: and LnL2~: for all LeH.Therefore we can extend kt to

measures Vl,V2eIR(L2) such that vl(L2)=l and v2(L2~)=l.Therfore vl(L2")=v2(L2)=0 and

hence vl(L2")=v2(L2’)=l.Since Vl and v2 are t.1 regular on t.2’,there exists L3,L4et.1 such

that L2’L3 ,L2~’zL4 and v2(L3)=vl(L4)=l.Therefore I.t(L3)=ix(L4)=l.Thus
IXCL3t"tL4)=v (L3r"d-4)= 1,a contadiction since L2’72L3r4 and V (L2’)--0.

We next define the notion for two lattices of the weak going up property.
DEFINITION 4.4: Let t.1 and /2 be two lattices st L2L1 and let IXleI(L1),IX2eIR(t.1)
,v leI(L2) with IX 1-<IX2 (L1) and v an extension on I-2 of IX on I. ,i.e. v ll=ix (L ). Then the

weak going up property holds if there exists v2eIR(t.2) st Vl<-V2 (I-2),and IX2=v21.
THEOREM 4.5:_Let L1 semi-separate L2 (L2L1) and let t.1 be normal,then the weak going

up property holds.
Proof: Let IXleI(L1),IX2eIR(L1) and VleI(L2) st IXl_<IX2 (L1) and Vl is an extension of IX1
vll=ixl.Let v2eIR(L2) be an element such that Vl_<V2 (t.2).Then since 11 semi-separates I-2
v21=ix (L1) and IXeIR(L1) and IXl_<IX (L1). Since L1 is normal and I.tl_<l.t (L1) and IXl<_IX2 (L1)
we have I.t2=v2l=ixeIR(L1 and v2 extends IX2 and the weak going up property holds.

THEOREM 4.6: If L separates I.2 then the weak going up property holds.

Proof: Suppose not and let IXleI(t.1 ),IX2eIR(L1 ),VleI(t.2) and IXl<_IX2 (L1) and IXl=Vl[ (L1).

Also, let v2eIR(L2) be st v2eIR(L2) st v2l=kt2 (L 1) and V l<V2 (L2) does not hold. Then there

exists L2eL2 st vl(L2)=1 ,v2(L2)=0 say or v2(L2’)=l.Since v2eIR(t.2) there exists a L2"eL2 st

v2(L2~)=1 and L2’L2~.Also since L1 separates t.2 there exists L1,LI~eI-1 st

LIL2,LI"L2"" and LlCLl"=.Then IXl(L1)=I and thus I.t2(L1)=l since IXl_<l.t2 (!-1).In
addition LI~L2 therefore IX2(LI")=I,a contradiction.vl_<V2 (L2). Thus the weak going up

property holds.
We have from theorem 4.2 that if L1 semi-separates I-2 then :IR(L2)--)IR(t.1) the restriction

map is defined .A converse holds for special lattices in the next theorem.

THEOREM 4.7: Let I-1 ,I-2 be lattices such that L2L1 ,L2 is disjunctive and L1 is normal.

Also suppose that :IR(t.2)--)IR(L1 is defined where IR(t.1 ),IR(’I’,2 have the wallman topology

,i.e. xW1(L1 ),a;W2(L2) are the respective lattices which define a topology on IR(L ),IR(t.2).
Then L1 semi-separates L2.
Proof: Suppose Llet.1 and L2et.2 and LlcL2=.Then W2(L1)W2(L2)=i,and also

(W2(L2))WI(L1)=.For if Ix=(v) where veW2(L2) and v(L2)=I and v(L1)=IX(L1)=I,a
contradiction.Thus (W2(L2))cW1(L1)=.Second, (W2(L2))=nW (Lli) ieI an arbitrary index

set ,and LliL2.This hold since W2(L2) is closed and thus compact since the space W2(X) is

compact and W2(X)W2(L2).In addition is continous since -I(wI(L1))=W2(L1),L1 is

normal which is equivalent to W1(11 normal and thus T2 by a known result .Therefore since

W2(L2) is compact and since Xl is continuous then (W2(L2)) is compact and since W1(I-1) is

T2,xIt(W2(L2)) is closed and thus xc(W2(L2))=&Wl(Lli) ieI an arbitrary index set.Since t.2 is

disjunctive and since ;IR(L2J--,IR(t.1)is defined,L1 is disjunctive.But this implies

L i.L2.Thus (W2(L2))=WI(L i),ieI and L iL2.
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Now look at g(W2(L2))&W I(L1)=(W l(Lli)&W l(Ll)=O.Then by compactness

(&W (L )&W (L 1)=O,0t= 1,2 N.Since L is disjunctive,this implies that &LIL2
,L ’=L1x,Ll"eL and L rL ~=O.Thus L! semi-separates L2.
DEFINITION 4.5: Let laeI(L) and define for E,st X:E, ~(E)=infla(L1) where LleL1.
We now state and prove a theorem giving necessary and sufficent conditions for semi-separation

of lattices L2L1.
THEORE 4.8: L semi-separates L2 iff I=1" on L2 where uIR(L1 ).

Proof: Look at I.t’(L2)=inf I,t(L 1’) Ll’L2.Then since L r’L2=gt,and L semi-separates L2 there

exists a L ~eL1 st Ll~L2 and LI~L =O.LI’L1~ thus infl.t(l., l’)>infl.t(L1~)
I.t’>_l.t~ on L2.Now look at la"(L2) assume that I.t~(L2)=0.Then there exists a Ll~eL st LI~L2
and I.t(Ll~)=0 or t(Ll~’)=l.Since telR(L1) there exists a L3eL1 st LI~’L3 t(L3)=l or

I.t(L3’)=0 and L3’Ll~;L2 or I.t’(L2)=l.t~(L2)=0.Thus t’=l.t on L2.
Conversely assume that L1 does not semi-separate L2 then there exists L1eL1 ,and L2L2 st

LloL2=O and Llr"tLI~ LI~L2 and LI~eL1 .Look at H={LI~ LI~L2,LI~eL1 }. Then H
has the tip and there exists a filter and thus an ultrfilter and its associated measure telR(L st

I.t(L 1~) ,LI~EH and since L L ~#tt,l.t(L1)=1.Now look at I.t’(L2).Since L oL2=lt then

Ll’L2 and since I.t(L 1) 1,I.t(L ’)=0,and thus I.t’(L2)=inf I.t(L3’)=0 L3’;L2,and L3eL .Now
look at I.t~(L2)=infl.t(L4) L4L2,L4eL then every such L4 is a member of H and thus

I.t~(L2)=inft(L4)=1,a contradiction.Thus L1 must semi-separate L2.
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