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ABSTRACT. A (commutative) ring R (with identity) is called m-linear (for an integer m
> 2) if (a + b)m am + bm for all a and b in R. The m-linear reduced rings are charac-

terized, with special attention to the finite case. A structure theorem reduces the study of

m-linearity to the case of prime characteristic, for which the following result establishes an

analogy with finite fields. For each prime p and integer m > 2 which is not a power of p,
there exists an integer s > m such that, for each ring R of characteristic p, R is m-linear

if and only if r m= rF for each r in R. Additional results and examples are given.
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1. INTRODUCTION.
Let R be a ring and m > 2 an integer. (Except in Remark 7.4, rings are assumed to

be commutative, with identity.) Following [1], we say that R is m-linear in case (a + b)m=

am + bm for all a and b in R; that is, in case the power function r I-> r m is a ring en-

domorphism of R. (In [2], m-linear domains and fields were studied under the ter-

minology of m-domains and m-fields. The references in [1] cite other algebraic contexts

where endomorphic power functions have been studied.) The simplest examples of m-
linear rings are the rings of prime characteristic p in case m is a power of p: see the easy
proofs involving binomial coefficients in [1] and [2]. In [1, Theorem 5] and [2, Theorem 2.3],
it is shown that this relationship between characteristic and exponent is necessary in a

number of cases of m-linearity. However, "exceptional" instances of m-linearity abound:

consider the table in [2, page 52] and the examples in [2, Theorem 3.1]. The main results of

this paper explain this diverse behavior.
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The explanation is two-fold. First, via standard methods, Theorem 2.2 reduces the

study of m-linear rings to the case of prime characteristic p. Within this case, the above

comments permit us to focus on the subcase in which m is not a power of p. For m and

p as in this subcase, m-linearity is explained in this paper’s main result, Theorem 6.4:
there exists an integer s > m such that a ring R of characteristic p is m-linear if and only
if r m= rps for each r in R. In other words, for this subcase, m-linearity just amounts to

the simple paradigm of pS--linearity.
Theorem 6.4 depends on a number-theoretic result (see Proposition 6.2) and on

much of the preceding material in this paper. Relevant results (for the subcase of prime p
and m not a power of p) include a bound on indices of nilpotence in an m-linear ring
(Theorem 4.3(a)) and an additive decomposition involving a canonical reduced subring of

an m-linear ring (Theorem 4.5). In part for this reason, reduced m-linear rings are stud-

ied closely (Theorem 4.1, Corollary 4.2), especially in the finite case (Theorem 5.3). This

work builds on an effective characterization of the m-linear fields in Theorem 3.1, which

answers a question left open in [2].
If R is a ring, J(R) denotes the Jacobson radical of R, N(R) denotes the prime radi-

cal (set of nilpotent elements) of R, and Rred R/N(R) denotes the associated reduced

ring of R. As usual, Fq denotes the finite field of cardinality q. Apart from some famil-

iarity with [2] and [1], we assume only elementary number theory and standard abstract al-

gebra, as in [3].

2. A STRUCTURE THEOREM.
In this section, we collect some useful facts and then give a result that reduces the

study of m-linearity to the case of prime characteristic.

LEMMA 2.1.

(a) If R is m-linear, then n char(R) is nonzero and the following
two equivalent conditions hold:
(i) km k (rood n)for each positive integer k;
(ii) n is square-free and m 1 (rood p-l) for each prime

divisor p of n.

(b) Let R FIR be the direct product of a family of rings Ri. Then R
is m-linear if and only if R is m-linear for each index i.

(c) Subrings and homomorphic images of m-linear rings are also m

linear.

(d) If R is m-linear, then so is Rred.
PROOF. (a) The fact that n 0 was observed in [2, page 53] as a consequence of the

fact that R cannot contain a copy of Z. The other assertions in (a) are from [1, Lemmas 1

and 2, Theorem 1].
(b) This is a restatement of [1, Lemma 3(a)], included here for reference purposes.
(c) The first assertion is obvious. For the second, consider a ring-homomorphism

f: R -- S where R is m-linear; write s f(ri) with s S and r R; and notice that ap-
plying f to the equation (r + r2)m= rlm+ r2m leads to (s + s2)m=slm+ s2 m. (Notice that

the second assertion also gives a new proof of the "only if" assertion in (b).)

(d) This follows directly from the second assertion in (c) since Rred R/N(R) is a

homomorphic image of R. |
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THEOREM 2.2. Let R be a ring and n char(R). Then R is m-linear if and only

if n Pl ""Pk for some pairwise distinct primes Pl Pk and R FIR where, for each
i, R isan m-linear ring of characteristic Pi"

PROOF. The "if" assertion follows directly from Lemma 2.1(b). For the converse, as-

sume that R is m-linear. By Lemma 2.1(a), n Pl "Pk for some pairwise distinct

primes Pi" As a torsion abelian group, R is the direct sum of its pi-primary subgroups
(cf. [3, hint for Exercise 7, page 82]). In other words, R (Ri, where R r R Pi-r 0 }.
Write l=ei, with ei Ri. Hence x=xe for each x in R. It is clear that R isaring.
To show that e is its identity element and that R is a ring direct sum of the Rj’s, it suf-

fices to prove RiR 0 whenever j. However this is clear since AnnZ (RiRj)
AnnZ (Ri) + Ann Z (Rj) Pi Z + pj Z Z. Moreover, char (Ri) Pi by the definition of Ri;
and R is m-linear by Lemma 2.1(b)(or (c)). |

The reader may have noticed that the proof of Theorem 2.2 leads to a decomposition
for any n-torsion ring when n is square-free; the case addressed in Theorem 2.2 is tai-

lored to fit our needs in 6. Although our main interest in Theorem 2.2 is its focus on

rings of prime characteristic, we close the section with a simple consequence that leads nat-

urally to the topics of 3, 4, while also giving a partial converse of Lemma 2.1(a).

COROLLARY 2.3. Let m and n be integers each greater than or equal to 2. Then

the following three conditions are equivalent:
(1) n is square-free and m ---1 (mod p-l) for each prime

divisor p of n;

(2) n Pl Pk for pairwise distinct primes Pi and, for each i,

the finite field Fpi is m-linear;

(3) Z nZ is m-linear.

Moreover, the above conditions imply, but are not implied by,
(4) Z/ nZ is reduced.
PROOF. (4) is equivalent to the condition that n is square-free. Hence,

(1) (4). However, it is easy to see that (4) (1): consider, for instance, m 2, n 3 p.
It is shown in [1, Theorem 2] that (1) = (3). It is possible to’extract the implication (3)

(2) from the proof of Theorem 2.2. However, matters are really simpler. Given either

(2) or (3), we have n Pl "Pk for distinct primes Pi (invoking Lemma 2.1(a) in case (3)

is given), and so Z/nZ 1-1Fpi by the Chinese Remainder Theorem. An application of

Lemma 2.1(b) now yields (3) = (2). |

A slightly different proof of Corollary 2.3 would be available in the next section, for

the above appeal to [1, Theorem 2] could be replaced by citing Theorem 3.1.

3. m-LINEAR DOMAINS.
In this section, we answer some questions that were left open in [2] concerning m-

linear domains and m-linear fields.

THEOREM 3.1. Let m >_ 2 be an integer and q pk be a power of a prime p. Then
the following conditions are equivalent:

(1) m ___pi (mod q -1) for some i=1,2 k;
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(2) There exists i,

_
i_ k, such that rm= rP’ for each r in Fq"

(3) Fq is m-linear.

PROOF. (3) = (2): Let (: Fq --) Fq be the Frobenius map; that is, c(r) rP. By Galois

theory, Gal(Fq/Fp) <c> i 1 < < k }. Assume (3). Define z: Fq -+ Fq by z(r) rm.
Since z is a (nontrivial) ring-homomorphism of fields, z is injective and so, by the pi-

geonhole principle, z is surjective; that is z Gal(Fq/Fp). Hence z i, with 1 < < k.

Thus rm=z(r)=ri(r)= rpi for each r in Fq.
(2) (1): Assume (2). Let r be a generator of the (cyclic) multipl.icative group of Fq.

The order of r is Fq\{ 0 q-1. But (2) yields rm= rPi, whence rm-p’ 1. Hence m-p
is divisible by the order of r; that is, (1) holds.

(1) (3): Assume (1). Write m pi + d(q-1) for some integer d. If r Fq\{ 0 },

then rq-1 1, and so rm= rP (rq-1)d rP 1 rP Of course, r 0 also satisfies rm= rP
Hence (2) holds. Since Fq is pi-linear (cf. [1, Lemma 4] or [2, Proposition 2.1(d)]),

(r + r2)P rlI9 + r2pi for each r1, r2 in Fq. It follows that (r + r2)m= rlm + r2m;, that is,

(3) holds. |

Theorem 6.4 will produce a characterization of the m-linear rings of characteristic

p that is motivated by condition (3) in Theorem 3.1. For the moment, we pause to illus-

trate Theorem 3.1 by finding all the 15-linear domains. By [2, Corollary 2.4], these are just

F2 and the so-called "15-exceptions," which are certain other Fq with q < 15. The only
values of q between 3 and 14 which satisfy condition (1) in Theorem 3.1, with m 15,

are q 3 and q 8. Hence the only 15-linear domains are F2, F3 and F8.

It is convenient next to recall the following material from [2, page 54]. If m > 2 is an

integer, then an m-exception is an m-linear domain R such that R is not isomorphic to

F2 and m is not a power of char(R); any m-exception is necessarily a finite field of car-

dinality less than m. The next result relates to questions raised in [2, page 55]. It identifies

a special role for F3: cf. the role found for F2 in [2, Corollary 2.6].

COROLLARY 3.2.

(a) F3 is m-linear for each odd integer m >_ 3. (If, in addition, m is

not a power of 3, then F3 is an m-exception.)
(b) Let q >_ 4 be a power of a prime. Then there exists an odd m >_ 3

such that Fq is not m-linear.

PROOF. (a) By Theorem 3.1, Fp is m-linear if and only if m p (mod p-l); that

is, if and only if m 1 (mod p-l). The assertion follows, with p 3, since m 1 is even.

(b) Write q pk for some prime p and positive integer k. By Theorem 3.1, there

are exactly k integers m between 2 and q such that Fq is m-linear (namely, m

p, p2 pk q). The number of odd integers m > 3 between 2 and q is q/2- 1 or (q-l)/2
according as to whether p is 2 or odd.

Suppose p 2. In this case, it suffices to show that k < 2k-1 1 (= q/2- 1). This can

easily be established by induction if k > 4. So, it remains to show that F4 and F8 are not

m-linear for some odd m. In fact, m 3 works: see the table in [2, page 52] or appeal to

[4, Exercise 6(c), page 10] or notice that condition (1) in Theorem 3.1 is not satisfied.

The argument for odd p is similar. If p 3 (and so k > 2), we have easily by induc-

tion that k < (3k 1)/2 or equivalently, 2k < 3k 1. For p > 5, we verify that k < (pk_ 1)/2
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or equivalently, 2k < pk_ 1, as follows. For k 1, the assertion holds since 3 < p; and for
k > 2, just notice that 2k < 3k- 1 < pk_ 1. |

The final result in this section is interesting in part because its statement does not

mention m-linearity. Its proof touches on a concept developed further in {}7.

COROLLARY 3.3. Let m >_ 2 be an integer and q pk be a power of a prime p. Put

f= xq- X and g (X + 1)m- Xm- 1 in Fp[X]. Then fig in Fp[X] if and only if m =_pi
(mod q -1) for some i=1,2 k.

PROOF. It is well known that f has q distinct roots, namely the elements of Fq.
Thus fig if and only if g(r) 0 for each r in Fq; that is, if and only if (r + 1)m rm+ 1

for each r in Fq. By [2, Proposition 2.1(b)], this last condition is equivalent to Fq being m-

linear. An appeal to Theorem 3.1 [(3) :o (1)] yields the asserted equivalence. |

4. m-LINEAR REDUCED RINGS.

According to [2, Corollary 2.4], the m-linear domains consist of F2; the domains of

characteristic p, in case m is a power of p; and certain m-exceptions Fq, with q < m,
which can be effectively determined using condition (1) in Theorem 3.1. As we show in

Theorem 4.1, this information leads to a characterization of the larger class of m-linear re-

duced rings. The ensuing focus on nilpotent elements leads eventually to a useful

decomposition (in Theorem 4.5) that characterizes m-linearity in the important case of

prime characteristic p, with m not a power of p.

THEOREM 4.1. Let m >_ 2 be an integer and R a ring. Then the following condi-

tions are equivalent:
(1) R is reduced and (r + 1)m=rm + for each r in R;
(2) R is (isomorphic to) a subring of a direct product of m-linear domains;

(3) R is reduced and m-linear.

PROOF. (2)= (3): Suppose R c rl Di, where each D is an m-linear domain. By
Lemma 2.1(b) and (c), R is m-linear. Moreover, R is reduced since N(R) c l-I N(Di)
n{0}={0}.

(3) = (I): Trivial.

(I) = (2): Assume (I). Put T I-I R/P, where P ranges over the set of prime ideals

of R. The kernel of the canonical ring-homomorphism R --> T is c P N(R) 0 },
since R is reduced, and so R can be identified with a subring of T. It remains to show, for

each P, that the domain R/P is m-linear. We see, as in the proof of Lemma 2.1(c), that

R/P inherits from R the property "(a + 1)m= am + 1 for all a." Hence, by an appeal to

[2, page 54], we have that R/P is m-linear, as desired. |

The next result sharpens condition (2) of Theorem 4.1 for certain cases.

COROLLARY 4.2. Let R be a reduced m-linear ring of prime characteristic p,
such that m is not a power of p. Then:

(a) R is (isomorphic to) a subring of a direct product of m-linear finite
fields of characteristic p.
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(b) Suppose, in addition, that R is finitely generated as an abelian

group. Then R K x... x K t, where each of the finitely many K
is an m-linear finite field.

PROOF. (a) View R as a subring of l-l R/P, as in the proof that (1) = (2) in

Theorem 4.1. Each R/P is an m-linear domain of characteristic p; since m is not a

power of p, [2, Corollary 2.4] assures that R/P is a finite field (of cardinality less than m).

(b) Consider the positive square-free integer p char (R). Now, R is a finitely gen-
erated (p-torsion) abelian group, hence finite. In particular, R is an artinian ring, and so

each of the (finitely many) prime ideals P of R is maximal. By the Chinese Remainder

Theorem, R/r I-l R/P. By the proof of (a), each R/P is an m-linear finite field.

Moreover, R m R/cu P, since cuP N(R) 0 }, completing the proof. (An alternate proof
is available, using Wedderburn structure theory, picking up at the point where we noticed

that R is finite, hence artinian. Let J(R) be the Jacobson radical of R. Then the semisim-

pie ring R/J(R) is (isomorphic to) a product of (necessarily m-linear finite) fields. But

J(R) N(R) (= 0 }) since R is artinian, whence R--R/J(R).) |

Corollary 2.3 shows that Z/nZ must be reduced if it is m-linear for some m > 1. In

the same spirit, the next result gives a sufficient condition for an m-linear, prime charac-

teristic ring to be reduced.

THEOREM 4.3. Let R be an m-linear ring of prime characteristic p. Then:

(a) Suppose that m is not a power of p; that is, m pte, where p d( e
and e > l. Then rPt =0 for each r in N(R).

(b) If p ( m, then R is reduced.
r)pt pte

PROOF. (a) Since R is m-linear, (l+r)m=l+rrn" that is, (1+
e
=l+r

rptHowever (1 + r)pt 1 + this is trivial if 0 and follows from the pt-linearity of R

r
pt )e pe

if > 1 Hence (1 + 1 + r Expanding the left-hand side by the binomial theo-

rem and rearranging, we have

el () r
ipt

i=1
0. (4.1)

The coefficient of rpt is ()=e which is invertiblein Fp (cR)since p,e. Hence we
ptcan solve for r Without loss of generality, e > 2. As all the later terms have r 2pt as a

ptcommon factor, the result is r r2p Sl, for some s R. Replacing r with r2 we ob-

tain an s2 R in the same way such that r2p r4 pt
s2" By iterating the process, we get s3,

s4,.., in R such that r2n-lpt =r2npt sn for each n. This yields rPt= SlS2...sn r2npt for

each n. By hypothesis, rd 0 for some positive integer d. Pick n so that 2n pt > d (for
ptinstance, take n [log2 (d)] + 1). Then r2npt r 2npt -d rd 0, so r =SlS2 sn 0 0,

as asserted.
pt

(b) Since p’m, t=0 in the notation of(a). Then by(a), r=r =0 for each r in

N(R); that is, R is reduced. |

Remark 5.4 will illustrate Theorem 4.3(b). The next result builds on the proof of

Theorem 4.3(a). It leads to Theorem 4.5, the promised decomposition that characterizes m-

linearity in important cases.
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PROPOSITION 4.4. Let R be a reduced m-linear ring of prime characteristic p,
such that m is not a power of p. Then r I rmis an automorphism of R.

PROOF. Define f: R R by f(s)= sm for each s in R. Since R is m-linear, f is a

ring-homomorphism. Since R is reduced, ker (f) 0 }; that is, f is an injection. Fix r
in R. Now, f restricts to an injective endomorphism, say g, of T Fp[r]. It suffices to
show that g is surjective. By the pigeonhole principle, it is enough to show that T is fi-
nite. But the displayed equation (4.1) in the proof of Theorem 4.3(a) does not depend on
whether r is nilpotent, and thus reveals that r is algebraic (hence integral)over Fp.
Hence T is finitely generated over Fp, hence finite. |

THEOREM 4.5. Let m _> 2 be an integer and let R be a ring of prime characteristic
p such that m is notapowerof p. Write m=pte, where p’e and e>l. Then R is
m-linear if and only if the following two conditions hold:

(i) There exists an m-linear ring B such that R BN(R), the
additive group direct sum of B and N(R).

(ii) spt =0 for each s N(R).

Moreover, if the above conditions hold, then B is uniquely determined.
PROOF. We consider the "if" assertion first. Assume (i) and (ii). If b B and x

N(R), the pt-linearity of R yields

x)Pt pt pt )e pt pt(b+x)m (b+ e =(b +x =(b +0)e=b e =bm (4.2)

Hence, given bl, b2 B and xl, x2 N, we have, with r b + xi, that

(r + r2)m ((b + b2) + (x +x2))m (b + b2)m blm + b2m rlm + r2m. (4.3)

Thus R is m-linear.

Conversely, suppose that R is m-linear. Then (ii) follows from Theorem 4.3(a).
Put B rm r R }. Since R is m-linear, B is a subring of R; and B is m-linear, by
Lemma 2.1(c). If b rm B N(R), then r N(R) (since N(R) is a radical ideal), and so
pt rpt 0 0. Hence B n N(R) 0 }. It remains tor 0 by (ii), whence b rrn- P’. rm- P.

show that R B + N(R). Consider s in R; put d sm B. Note,that B is reduced since

B n N(R) 0 }. Hence, applying Proposition 4.4 to B, we find an element c in B such

that d cTM. Then (s-c)m sm- cm d d 0; in particular, s c N(R). Thus s

c + (s- c) B + N(R), proving (ii).

Finally, we prove the uniqueness of B in (ii), assuming that R is m-linear. Sup-
Xptpose also that R D N(R), for some m-linear subring D of R. Since xm xm_ pt

xm-P’-0 0 for each x in N(R), we have

B={rmlrR}={um+vm[uD,vN(R)}={um[uD}=D; (4.4)

the last equation follows by applying Proposition 4.4 to D. |

It is interesting to note, in the context of Theorem 4.5, that B and R/N(R) Rred
are isomorphic as abelian groups.

Recall from Lemma 2.1(d) that if R is m-linear, then so is Rred. The converse is

false; our next result presents the minimal counterexample.
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EXAMPLE 4.6. Let R be the ring of dual numbers over F2; that is, R F2 [X]/(X2)
{a +bx a,b F2 }, where x X + (X2) in R satisfies x2 0. Of course, R is a nonre-
duced 2-linear ring with exactly 4 elements. Note that R is not 3-linear (x + 1)3

x 3 + 3x 2 + 3x + 1 0 + 0 + x + 1 0 + 1 x 3 + 1. However, Rred R/N(R) R/{ 0, x _= F2
is 3-linear.

This example raises the question of characterizing the 3-linear rings. Proposition
5.6 will produce such a characterization.

5. FINITENESS QUESTIONS.
Theorem 5.3 presents a characterization of the finite m-linear reduced rings. To

prepare for this, we study a class of (necessarily commutative) rings. Proposition 5.1 ad-
mits an easy proof which is omitted. Example 5.2 is included as motivation and as a lem-
ma for Theorem 5.3.

PROPOSITION 5.1. Let n >_ 2 be an integer and R a ring such that rn= r for each
r in R. Then R is reduced and n-linear.

EXAMPLE 5.2. (a) LetK K be finitely many finite fields, > 1, with IK =qi"
Put R K x x K and n 1-1 (qi 1) + 1. Then R is a finite reduced n-linear non-
domain and rn= r for each r in R.

Evidently, R is not a domain since > 1. In view of Proposition 5.1, it suffices to

show rn= r for each r in R. For this, it is enough to prove xn= x for each x in K j.
Without loss of generality, x 0. Hence xq- 1. Raising this equation to the power
lIIj (qi 1), we have xd 1, where d rI (qi 1), and so xn= xdx x, as desired.

(b) Let R be the ring considered in Example 4.6. Then R is a finite nonreduced 2-
linear ring; and no integer n > 2 satisfies rn= r for each r in R.

THEOREM 5.3. If R is a finite ring, then the following are equivalent:
(1) There exists an integer n >_ 2 such that rn= r for each r in R;
(2) R is reduced and m-linear for some integer m >_ 2.

PROOF. (1) =o (2) by Proposition 5.1. Conversely, assume (2). As in the proof of

Theorem 4.1, R is (isomorphic to) a subring of Fl R/P, where P ranges over the prime
ideals of R. Each of the (finitely many) R/P is a finite domain, hence a field. If R has a

unique prime ideal, then R is a finite field and rm= r for each r in R, where m RI.
If R has more than one prime ideal, then Example 5.2(a) produces a suitable n. |

REMARK 5.4. Consider the ring R in Example 5.2(a), in case 2 and K K2
F3. Then R F3 x F3 is an m -linear ring, where m rl (qi 1) + 1 2- 2 + 1 5; and R
has characteristic p 3. Since p’m, R is the type of reduced ring studied in Theorem

4.3(b) (and more interesting than the illustrations afforded by the fields or domains in

2,3).
One should note that the construction in Example 5.2 does not always lead to p’m:

consider, for instance, F2 x F2.

Theorem 5.3 established the converse of a weakened version of Proposition 5.1 for

finite rings. This is best-possible: indeed, Example 5.5 shows that conditions (1) and (2) in

Theorem 5.3 are not equivalent if R is infinite.
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EXAMPLE 5.5. There exists an infinite reduced 3-linear ring R such that there is
no integer n > 2 satisfying rn= r for each r in R. For the construction, take

R= I-I F3d F x F x F x (5.1)d=l 3 9 27

Of course, R is infinite and reduced; moreover, R is 3-linear since char(R) 3. Now,
consider n > 2. Pick d so that n < 3d. Let x generate the (cyclic) multiplicative group

F3d \ 0 }. Then the order of x is 3d- 1, which exceeds n- 1, and so xn-I 1. Thus r
(1 1, x, 1 satisfies rnr.

Examples 4.6 and 5.5 suggest the question of characterizing the 3-linear rings.
Proposition 5.6 answers this question. In passing, we observe that a nonzero ring R is 2-
linear if and only if char(R) 2.

PROPOSITION 5.6. A ring R is 3-linear if and only if R -_-A x B, where A is a
subring (possibly { 0 }) of a product of copies of F2 and B is either 0 } or a ring of
characteristic 3.

PROOF. F2, 0} and any ring of characteristic 3 are each 3-linear. Hence, by
Lemma 2.1(b) and (c), any A x B as in the statements is 3-linear.

Conversely, suppose R is 3-linear. Hence (1 + 1)3 13 + 1 3 in R; that is, 6 0 in
R. It follows that R is an algebra over Z/6Z F2 x F3. Thus R A x B, where A is an
F2-algebra and B is an F3-algebra. If B 0 }, then char(B) 3. Similarly, either A 0
or char(A) 2. It remains only to show that if A 0 }, then A embeds in a product of
copies of F2.

By Lemma 2.1(c), A is a 3-linear ring (of characteristic 2). Each a in A satisfies
(a + 1)3 a3 + 1, whence a2 + a 0, whence a2 a. By Proposition 5.1, A is reduced.
Hence A embeds in 1-1 A/P, where P ranges over the prime ideals of A. It suffices to

show that each such A/P is isomorphic to F2. Since A/P is a 3-linear domain of charac-
teristic 2, this holds: see [2, page 52] or [4, Exercise 6(c), page 10]. |

We close this section with some applications of Proposition’5.6.

REMARKS 5.7. (a) Because of Proposition 5.6, one can see that all 3-linear rings are
rather uncomplicated. For one such example, consider the ring

F3 [X]/(X5) x (a,b,b,a,a,b,b,a e F2 x F2 x }. (5.2)

(b) In Example 4.6, we saw that R F2 [X]/(X2) F2 [x] is not 3-linear. Proposition
5.6 provides another proof. Indeed, it suffices to verify that R cannot be embedded in

D= rl F2; this holds since D is reduced and R isn’t.

6. AN ANALOGY WITH FINITE FIELDS.
In view of Theorem 2.2, an "explanation" for the phenomenon of m-linearity

hinges on the case of prime characteristic. Theorem 6.4 provides such an explanation, in

the spirit of condition (2) in Theorem 3.1. The section begins with some preparatory num-
ber theory. Lemma 6.1 is given for reference purposes; its well known proof is omitted.
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LEMMA 6.1. Let p, a and b be positive integers, with p _> 2. Then
pa l pb_ l if and only if a b.

The next result establishes a "universal" p-th power dependent upon m, not a

power of p, that explains any m-linearity that occurs among fields of characteristic p.

PROPOSITION 6.2. Let
not a power of p. Then:

(a)

p beaprimeand let m be an integer at least 2 that is

Let (i1, k1) (in, kn) be the list of all (i,k) such that
_

<_ k and
m pi (mod pk_ 1); assume this list is nonempty. Then there is an integer
s such that s =-ij(mod kj) for j--1 n. Also, one may have s >_ m.

(b) There is an integer s >_ m such that, for any finite field F of characteristic

p, F is m-linear if and only if rm=rms for each r in F.
PROOF. (a) First, we show that the list of (i, k)’s is finite, namely that k is bound-

ed above (by logp m). Indeed, by Theorem 3.1, F Fpk is m-linear if (i, k) is in the list.
Since m is not a power of p, F is then either F2 or an m-exception, whence Corollary
2.4 of [2] yields pk < m, as desired.

Consider two distinct entries in the list, say (i1, k1) and (i2, k2). Without loss of
generality, 2 > 1. We claim that d (k1, k2) divides 2 1. To see this, note first via

Lemma 6.1 that

(pd_ 1)i(pkj_ 1) and (pkj_ 1) l(m-pij) for j---1 and 2, and so (6.1)

(pd 1) [(m p’l ). (m p12 )] p2 p’l p’l (p2-il 1), whence (6.2)

2pd_ 1 divides p 1. An application of Lemma 6.1 now yields the claim.

In view of the above claim, we may apply a well known variant of the Chinese

Remainder Theorem, so as to produce an integer s satisfying the n congruences s

(mod k j). By adding a suitable multiple of k1. ....kn to s, we can arrange that s > m.

(b) Keep the notation of (a); in particular, let s > m be as in, (a). By Theorem 3.1,

(i, k) is in the above list if and only if Fpk is m-linear and is the unique integer, 1 < <

k, such that rm= rP for all r in Fpk. If F is a finite field (indeed any ring) of characteristic

p such that rm= rps for each r in F, then we see as in the proof of Theorem 3.1 [(1) = (3)]

that F is m-linear. (Thus, if the above list is empty, we may belatedly choose s m; in

this case, (b) holds vacuously.) It remains only to show that rm= rps for each r in Fj
Fpkj, = 1, n. Since the multiplicative group Fj\ {0} is cyclic, our task is to show

c p j- 1 divides m- pS for 1., n. Since dj divides m- pij an equivalent task is

to show dj (m pij (m pS) plJ (ps-ij 1). It is equivalent to show that

cb ps-ij 1 or (equivalently by Lemma 6.1) that kj s ij, for 1 n. This last con-

dition is just a restatement of the congruences established in (a). |

REMARK 6.3. One cannot delete the hypothesis in Proposition 6.2 (and Theorem

6.4) that m is not a power of p. Indeed, if rP rps for all r in Fpk for all k > 1, then

pk 1 pS_ p for all k, a contradiction if k > s.
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We now present this paper’s main result.

THEOREM 6.4. Let p be a prime and let m _> 2 be an integer that is not a power of
p. Then there exists an integer s >_ m such that, for any ring R of characteristic p, R is

m-linear if and only if rm=rps for each r in R.
PROOF. Take s as in Proposition 6.2. Then the "if" assertion follows easily, as in

the proofs of Proposition 6.2 and Theorem 3.1.

Conversely, let R be an m-linear ring of characteristic p. By Theorem 4.5, write R
B (B N(R) as an abelian group, where B is an m-linear subring of R. Note that B is

reduced since N(B) c B N(R) 0 }. Write m pte, with p’e and e > 1. Consider r

in R; write r=b+x, with b B and x N(R). By Theorem 4.3, xpt=0; since pt<m<
pS, we also have xm= 0 xPs

Hence the m-linearity of R yields rm bm + xm bin;, and

similarly the pS-linearity of R yields rps bps. Thus, we may replace R with B; that is,

assume R is reduced.

Since R is reduced, Corollary 4.2(a) permits us to view R as a subring of a product
T FI F of some m-linear finite fields F of characteristic p. The condition "rm= rPs"

holds in each F by Proposition 6.2(b), hence it holds (componentwise) in T, and hence it

’holds in the subring R. |

7. MISCELLANEA.
In this final section, we explore two topics involving m-linearity. The first is the

question whether a ring R is m-linear if (and only if) (r + 1)m= rm + 1 for each r in R.

This question has an affirmative answer if R is a domain [2, page 54]; more generally, if R
is reduced (see Theorem 4.1); and also if R Z/nZ (by an easy proof by induction that is

left to the reader). Proposition 7.2 gives an affirmative answer in case R is quasilocal (that

is, has a unique maximal ideal), but we must leave the general question open.

LEMMA 7.1. Let R be a ring and m a positive integer. Then:
(a) Let u, v e U(R), the set of invertible elements of R. Then (r + u)m= rm + um

for each r in R if and only if (r + v)m=rm+ vm for each r in R.
(b) Suppose that (r + 1)m rm+ 1 for each r in R. Then (r + j)m rm + jm

for each r in R and j in J(R).
PROOF. (a) It is enough to prove the "only if" assertion. For this, note that

(r + v)m [u-lv(uv-lr + u)]m (u-lv)m(uv-lr + u)m (u-lv)m [(uv-lr)m+ u m]
(u-lv)m(uv-lr)m + (u-lv)mu m r m + v m.

(b) Since + 1 U(R), it follows from (a) that (r + + 1)m= r m+ (j + 1)m. The

hypothesis permits this equation to be rewritten as (r + j)m + 1 r m + jm + 1, and so

(r + j)m= rm + m. |

PROPOSITION 7.2. Let R be a quasilocal ring and let m 2 be an integer. Then

R is m-linear if (and only if) (r+ 1)m=rm+l for each r in R.

PROOF. By Lemma 7.1, (r + s)m= rm+ s m for each r in R and each s in U(R)u

J(R). This union is R since R is quasilocal, and so R is m-linear. |

REMARK 7.3. The above work raises the question of what is implied for a ring R if

a given R\U(R) and integer m > 2 satisfy (r + i)m=rm+ m for each r in R. An easy
positive result is that (r i)m= r m + (_i)m for each r in R. However, R need not be m-
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linear under these conditions. For instance, (r + 2)2 r 2 + 2 2 for each r in Z/4Z, al-

though Z/4Z is not 2-linear. Additional examples of this phenomenon are easy to find by
taking R Z/nZ, with (i, m, n) (2, 4, 8), (6, 4, 8) or (3, 4, 6), for example.

The final topic in this section concerns the theory of m-linearity for arbitrary associa-

tive rings. Remark 7.4 summarizes some results in this regard which the second-named

author will publish elsewhere.

REMARK 7.4. In this remark, we remove the hypotheses that rings be commutative

and have an identity, and indicate some ways in which the ensuing theory of m-linearity
differs from the earlier work in this paper. First, in contrast with Theorem 2.2, a ring of

characteristic zero can be m-linear; consider the ring XZ[X]/(pXm), where p is prime and

m is a power of p. Second, the index of nilpotence corresponding to Theorem 4.3(a) be-

comes m + pt, which is best-possible. Third, in the absence of commutativity, conditions

(i) and (ii) in Theorem 4.5 do not imply m-linearity: consider the ring of upper triangular
2 x 2 matrices over a reduced m-linear ring (in the earlier sense) of prime characteristic.

Fourth, examples show that the "only if" part of Theorem 6.4 does not carry over to the

more general setting. Finally, not all m-linear rings can be embedded in m-linear rings
with identity; criteria for such embeddability can be given.
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