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Abstract. We show that the well-known least squares (LS) solution of an overdetermined system of linear

equations is a convex combination of all the non-trivial solutions weighed by the squares of the corre-

sponding denominator determinants of the Cramer’s rule. This Least Squares Decomposition (LSD)
gives an alternate statistical interpretation of least squares, as well as another geometric meaning.
Furthermore, when the singular values of the matrix of the overdetermined system are not small, the LSD
may be able to provide flexible solutions. As an illustration, we apply the LSD to interpret the LS-solution

in the problem of source localization.
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1. INTRODUCHON. Given an overdetermined system of linear equations

Ax -b (1)

where A [aij] is an mxn matrix with m n and rank (A) n, and b [bj] is an m-column vector, and

x [x] is the unknown n-column vector. For simplicity, we consider only real numbers. There are at most

det[A ix...i.; b: j] j 1, ...,n
(2)x[ix...i,] det[A" ix...in] 1 < < < m

where det[A: ix...in], assumed non-zero, is the nxn minor formed from A by taking the rows ix,..., i,, and

det[A:ix...in; b: j] is the previous determinant with its jth column replaced by the corresponding bi,
from the vector b.

The least squares (LS) solution is [3]:

Xts (a ’A )-Xa ’b (3)

where (A’A)-XA’ is the generalized inverse ofA. Using our notations, the LS-solution can be rewritten as
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det[A ’A ;A ’b j]
Xi[LS]" det[A ’A j 1, ...,n (3’)

Furthermore, it is well-known that the generalized inverse and the LS-solution can be expressed in

terms of the singular-value decomposition (SVD) [3] which suggests a way of obtaining more accurate

solutions by taking the sum over those large singular values only.

LEAST SQUARES DECOMPOSITION.
THEOREM.

det[A ’A A ’b: j] det[A i...i.]’ det[A i...i.; b: j]

det[A’A , t[A i...i.]l 0

Forj- 1 ,n,

(4)

(5)

det[A: ix...i.]l 2" xi[h..]E (6)Xj[LS]
.’, """ E det[A" kx...k.]l

PROOF. We have assumed that A’A is non-singular (since rank(A)- n). Note that Eq. (5) is a

special case of Eq. (4), and Eq. (6) is the consequences of Eqs. (2), (3), (4) and (5). The case when m n

is obvious, because in this case, there is only one term in the summations. The case when n 2 can be

verified easily by direct evaluation. The proof for the general case is notationally lengthy. In order to

illustrate the spirit, we will prove Eq. (4) for m 4 and n 3 in the following. Note that ifA is complex,
we simply replace all the transposes by the conjugate transposes.

SupposeA [ai]4s and b [bi]4,,r Then

and

lla lailai2 auas"
aea, a aeau

Ab

LetDz; .det[A: 123]’ .det[A: 123; b: 1]. Therefore,

a21 a31

la a23

ab
1,2,3. ab
1,2,3

1,3aila
1.3a
1,3aai2

bl a12 a13

b2 a22

b a32 a3

ala
1.2,3

aa
1,2,3
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det[A ’A;A’b: 1]-

a42

1 aila2 a41a4.3

ab, a.2a a4.2a4.

l a,b, l atjai2 a43

abi , aaiz a43

l ailb a41 , ailat
1,2,3

1 ai2bi a42 2 ai2a3
1,2,3

t ai3bi a4.3 1,3 aa2

1,2,3 1,2,3

l.zs’aaaz 1.3a2
For the third determinant, multiply Column 2by a4. and add it to Column 3. For the fourth determinant,

multiply Column 1 by a4.2 and add it to Column 2, then multiply Column 1 by a4.3 and add it to Column 3.

We then have,

D12 det[A ’A ;A ’b" I]-
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a’na2 aaiJ

ab a3a2 ,
a41b4

a42b

a,b,

aila l ailaJ

a. ai2as
asa a

Similarly, we obtain DI24,DI:;4 andDz. Adding up all these expressions, we note that the sum of the

second determinants in the above expression gives-det[A ’A;A ’b: 1], and similarly for the third and the

fourth determinants. Therefore,

D12 +D12 +DI3 +Dz-4.det[A’A;A’b" 1]-det[A’A;A’b: 1]

det[A ’A A ’b 1] det[A ’A A ’b 1]

de [A ’A A b 1]
which is the required LSD (Eq. (4)).

If all the singular values ofA are not small, we cannot reduce the summation in the SVD. However,
the Least Square Decomposition (LSD) (Eq. (6)) suggests that we may still get a better answer by summing
those NT-solutions whose Cramer denominator determinants are large in magnitude. We will verify the

LSD formulas and the above idea via an example in the next Section. In fact, the LSD has the same form

as a well-known result in statistics: If 1 ,, are unbiased estimators of t9 with variances

respectively, then the linear unbiased minimum variance estimator of 19 is well known to be [2]:- 2 (7)

j-1

Eq. (7) is also the result of minimizing

where

E E (e,-e)/ ()

by the method of least squares [2]. Thus, ifwe interpret the squares ofthe Cramer denominator determinants
as the o"-’s, the N-T-solutions are the estimates of the "true" solutions, then Eq. (6) and Eq. (7) are identical.

Therefore, the LSD has a second meaning of "least squares" (Eq. (8))!
Eq. (6) gives a simple geometric interpretation, namely, the LS-solution is the "center ofmass" among

the NT-solutions. The LS-solution is therefore lying near those NT-solutions whose denominator deter-

minants are large in magnitude (or, small variances).

3. AN EXAMPLE. Consider

As shown in Table 1, there are 4 NT-solutions (see Columns 1 to 4 in Table l(a)). The LS-solution is

computed from (A ’A )x (A ’b),
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as shown in Column 5. We have, from Table l(a),

(44)2(208/44) + (1)2(57/1) + (-5)2(-55/- 5) + (23)2(161/23) 13187

(44) (114/44) + (1)2 (-34/1) + (-5) (-60/- 5) + (23) (138/23) 8456

(44) (-96/44) + (1)2 (-44/1) + (-5) (-10/- 5) + (23) (-92/23) -6334

and

(44)2+(1) +(-5)2+(23) 2491.

Hence all the LSD formulas have been verified. Furthermore, the ratio of the magnitude squared (or, just

the magnitude) of the determinants in decending order provides information about the significant number

of terms in the LSD sum. In our case, we have

(44) (23) (-5) (1) 1 0.27324 0.01291 0.00052

Thus, we may define a "condition number" as the ratio of the largest determinant squared to the smallest.

The singular values can be computed [1]: st- 7.501111, s2- 2.926371, s3-2.273693. Note that

sls2s3 2491. None of these singular values are small, because the rank of the matrix is 3. In this case,

the SVD gives no further improvement, but the LSD is still flexible as illustrated in Table l(b), where the

LSD is summingup the N-T-solutions with large denominator determinants in decending order ofmagnitude.

Thus, we may first find the SVD of the system to see how many singular values are small to do the necessary
rank reduction, then we apply the LSD for an ultimate improvement.

(a) NT-Solutions and LS-Solutions

X

Cramer’s rule: NT-Solutions

Rows
1,2,3

det=44

208/44
4.72727

114/44
2.59091

-96/44
-2.18182

Rows
1,2,4
det=l

57/1
=57

-34/1
-34

Rows
1,3,4
det=-5

-55/-5
=11

-60/-5
12

-44/1
-44

-10/-5
=2

Rows
2,3,4
det=23

161/23
=7

138/23
=6

LS (SVD)-Solution

det=2491

13187/2491
5.29386

8456/2491
3.39462

-6334/2491
-2.54275

(b) I.SD Solutions

LSD Solutions

1 det
44

208/44
4.72727

114/44
2.59091

-96/44
-2.18182

2 dets
44, 23

12855/2465
5.21501

8190/2465
3.32251

3 dets"
44, 23, -5

13130/2490
5.27309

8490/2490
3.40964

-6340/2465
-2.57201

-6290/2490
-2.52610

4 dets-
44, 23, -5, 1

13187/2491
5.29386

8456/2491
3.39462

-6334/2491
-2.54275

Table 1. Example of Least Squares Decompositions.
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4. AN APPLICATION TO SOURCE LOCALIZATION. In navigation and sonar we adopt sen-

sors (at least 3) to receive signals from a source. Let us first consider a 2-dimensional problem with a

constant sound speed for simplicity. Suppose we can estimate the time delays between every two

sensors. The locus of the source falls on a hyperbola with these two sensors as its loci. Thus every two

sensors determine a hyperbola. Suppose there are n sensors (n 3), then the intersection fo all the

hyperbolas will give the source location. This is the well known technique of hyperbolic fixing. How-

ever, due to noisy time delay measurements, these hyperbolas do not intersect at a unique point. Usu-

ally, the source is far away from the sensors and the hyperbolas may be approximated by their

asymptotes. The problem is now reduced to a system of pairs of 2x2 linear equations. A least-squares
solution gives the source location. With the LSD theorem, we interpret the LS-solution as the weighted

sum of all possible source locations according to their denominator determinants. Each denominator is

proportional to the tangent of the angle between the two hyperbolas. Thus, if the hyperbolas intersect at

almost a right angle, the source location is more accurate than those intersections at small angles. This

angle interpretation is simple and intuitive, and it is justified by the LSD theorem. Furthermore, we can

just select those solutions with large denominators only. Note that the SVD method has no improve-

ment because the rank is always 2. The optimal location is the "center of mass" of the possible loca-

tions.

Moreover, instead of using hyperbolas, Schmidt [4] has shown that the source location is the focus

of a conic passing through the 3 sensors, hence the source is on the focal line. With more than 3 sensors,

we have more than one focal lines. The intersections of these focal lines give the source location(s). Thus,

we actually solving linear equations, not just an approximation using asymptotes as in the hyperbolic fixing

technique. We can use the LSD to interpret the angles between the focal lines as a measure of the accuracy
of the solutions. Formulations of the localization in 3-dimensions using Schmidt’s method and other

equivalent methods to get LS-solutions have been done [5], [6]. We can interpret all these LS-solutions

using the LSD similar to the 2-dimensional case.
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