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ABSTRACT. In this paper we give some new existence theorems for nonlinear random equations

and inequalities involving operators of monotone type in Banach spaces. A random Hammerstein

integral equation is also studied. In order to obtain random solutions we use some results from the

existing deterministic theory as well as from the theory of measurable multifunctions and, in

particular, the measurable selection theorems of Kuratowski/Ryll-Nardzewski and of Saint-Beuve.

KEY WORDS AND PHRASES. Random equations and inequalities, operators of monotone type,
coercive operators, measurable multifunctions.

1991 AMS SUBJECT CLASSIFICATION CODES. 47H05, 60H99.

1. INTRODUCTION.
In recent years the theory of random nonlinear operator equations has attracted the attention

of many authors (e.g. Engl [1], Itoh [2,3], Kravvaritis [4,5], Papageorgiou [6]). This interest is

partly due to the fact that there are many applications of this theory to various applied fields such

as control theory, statistics, biological sciences and others. For a discussion of such applications one

may consult the books by Bharucha-Reid [7] and Padgett/Tsokos [8]. In this paper we present
some new existence theorems for solutions to random nonlinear opera.tot equations and inequalities.

To obtain them we use some results from the existing deterministic theory as well as from the

theory of measurable multifunctions and, in particular, the measurable selection theorems of

Kuratowski/Ryll-Nardzewski and of Sainte-Beuve.

In Section 2, we fix our notation and recall some basic definitions from the theory of

measurable multifunctions and from nonlinear functional analysis.
In Section 3, we give first a random fixed point theorem and then a perturbation result

concerning operators of monotone type.

In Section 4, we treat random nonlinear variational inequalities. Two of them involve random

operators of monotone type and a random convex function and one concerns a multivalued operator
that does not satisfy any monotonicity condition.

Finally, in Section 5, a concrete random Hammerstein integral equation is studied.

2. PRELIMINARIES.
Let (ft, E) be a measurable space and X a separable Banach space. Let f:f 2X\{} be a

multifunction with closed values. We say that F is measurable if it satisfies the following
equivalent conditions:
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(i) For aIIUC_Xopen, F-(U)={Efl’F(w)NU#O}EE,
(ii) There exist fn’fl X, meurable for all n N, such ha:

F(w) cl{fnfw)}n e N for all fl (CtMng representation).
If, in addition, there exists a complete, a-finite meure p, defined on Z, then (i) and (ii) are

equivMent to:

(iii) GrF= {(,z) xX" zq F()} Z@ B(X), where B(X)is the Borel a-algebra of X.
Let X be a reflexive Banach space d X* its topologicM duM. By (.,.) we denote the duMity

pring betwn X d X*. The duality mapping J of X into X* is defined by"

Jz={z*cX*’(z*,z)= IIlld I1*11 I111}.

The symbols "" d "" denote convergence in the strong d we topology, respectively.

An operator T" D X X* is called (a) demicontinuous if zn D d xn x D imply

TznTz, (b) weakly continuous if zn D d zn x D imply Tzn Tx, (c) wetly closed if

Tz, (d) qu-bounded if to each M >0 therexn D, xn z D and Txn y imply y=

corresponds a constant K(M) such that whenever x D, (Tx, x) M d g it

follows that Tz K(M), (e) on0toe if (Tx- Tg, x- ) 0 for MI x, D, (f) mimM
monotone if it is monotone d there is no proof extension of T that is Mso a monotone operator,

(g) pseudomonotone if (D is a closed, convex subset of X) the following conditions e satisfied:

(P1) For y finite dimensional subspace F of X, T is continuous from F D into X*, endowed

with the weak topology; (P2) If xn D, zn z D, Txnf d limsup(Tzn, xn x) 0 then

f=7 =d lim(7.,.)=(y,), (h) o if .D,.D,T.y =d

limsup(Tzn, zn- x) 0 imply that f Tx.
For operator T:flxDX* we will write T(w)x for the vMue of T at (w,z) fi flxD.

Then T is called rdom, if, for y x D, T(. )x is meurable. A rdom operator T is cMled

crcive if here exists a function c’R + R, with c(r) + r +, such that

(T(), ) c( II)" for n d D.

A rdom operator T is sd to be monotone, demicontinuous, etc., if, for every w fl, T(w)(-
is monotone, demicontinuous, etc. We symbolize by B(,X) the set of meurable functions. x such that aup { ()II’ a} < .
3. RANDOM EQUATIONS.

We ben with a random fixed point threm which generMizes Threm 6 of cceri [9]. In
this d in the following sections we fix (fl,,) to denote a complete, a-finite, meure spe.

THEOREM 3.1. t H be a sepable Hilbert space d D a convex, closed d unded

subset of H with 0 intD. Le A" x D H be a random and wetly continuous operator such

tht (a(), ) 2 fo n Dd a. The a admits a rdom fixed point, i.e., there

exists a meurable " D such that A(w)(w)= (w) for 1 w E a.
PROOF. For every fl, we define a mapping R" 2D by R(w) {x D’x A(w)x}.

By Threm 6 of cceri [9] we have R(w) for M1 w ft. Let {gn}n N be a dense sequence

into H. We note that

Gn= {(, ) z axD--()=0} {(, ): (-(), .) 0}
n=l

Now, for each n fi N, the mapping fn" x D R defined by fn (, z) (x -’A (w) x, gn) is

meurable in w d continuous in z. By [10, Theorem 6.1] fn is jointly meurable, so

Gr R B(D). Applng Threm 3 of Sainte-Beuve [11], there exists a meurable selection of

R, i.e., a meurable : D such that

()6() () fo n Z a.
We study now perturbations of rdom mimM monotone operators by rdom operators of ty
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(M). The deterministic case of the following theorem has been obtained in [12].
THEOREM 3.2. Let X be a separable, reflexive Banach space and D1, D2 subsets of X. Let

L: fl D X* be a jointly measurable, maximal monotone and weakly closed operator with

L(w)O 0 for all w (5 12. Also let T: 12D2 X* be a random, quasi-bounded, coercive and of
type (M) operator. Suppose that there exists a dense linear subspace X0 of X, which is contained

in D2, such that for each finite dimensional subspace F of X0, the operator T: fl F---} X* is

demicontinuous. Then, for each y (5 B(12,X*) there exists z (5 B(12,X) such that:

L()x() + T()x() y() for all w (5 .
PROOF. We may assume, without loss of generality, that y(w)= 0 for all w (5 12. Also, by a

result of Trojanski, we may suppose that the spaces X and X* are locally uniformly convex. Thus,
the mapping j-1. X* X is continuous from the strong topology of X* to the strong topology of

X (cf. [3]). For > 0 and ,o f, let Le(w) be the Yosida approximant of L(w) defined by:

L()x (L(w)-1 + J-1)-lx.
Le(w) is everywhere defined, single valued, bounded, maximal monotone with Le(w)O 0 (cf. [13]).

We show that Le" 12 X X* is random. Fix x (5 X and consider

Gr L:(. )x {(, y) (5 12 X*’y (L()-1 + :J-1)-lx} {(, y)" x (5 L()-ly + C j-ly}

{(, y)" (x- ej-ly) G/()-ly} {(, y).y t(w)(x- ej-ly)}

{(, y)" L()(x- :j-ly)_ y 0}.

Now, the mapping y x :j-ly, being continuous, is meurable, so (, y) (, x- :j-ly)
is meurable. Composing this and L we get that (, y) L()(x- :j-ly) is meurable. FinMly,
(, y) i(w)(x- :g-iy)_ y is meurable and thus GrLe(. B(X*). Since (,,) is

complete, by Himmelberg [10, Theorem 3.4], ie(. )x is meurable, i.e., L is rdom.
Let {Xn}nq be an increing sequence of finite dimensionM subspaces of X0, such

that U Xn is dense in X. For each n , let Jn be the injection mapping of Xn into X d j its
n=l

du. Clely, the operator K,’xX,X defined by K,:()z=j(L()+T())j,z is

rdom d continuous. Since Le()0 0 and T is crcive, Kne is Mso crcive.

By Itoh [2, Proposition 3.1] there exists a meurable mapping xn’ Xn such that

g.().() 0 fo 1: C n. Now, we ,ve:

0 (Le()xn() + T(w)xn:(w), xn() > (T()Xn(W), xn(w > c( -()II)" -()II
It follows from the growth property of c(r) that there exists a constant M > 0 such that

IlXn(W) <-M for all nGN, >0 and w(51. We set un(w)=L(w)xn(w and

rue(w) T(w)xn(w). Because Le is bounded and T quasi-bounded the sequences {une(w)} and

{vne(w)} are bounded, therefore {une(w)+ vn(w)} is bounded and, since [J Xn is dense in X, we

get that n

un(w) + rue(w) -% 0 in X*, as n .
Let Fne(w)=weakcl{xi(w)’i>n}, for every n(bN. Under the weak topology
M(0)-- {x X. x < M) is metrizable space. Thus, by [10, Theorem 5.6] the multifunctions

Fne are weakly measurable. Then the multifunction Fe" 12 --} 2 BM(O) defined by

r() [q Fn(w), for each w (5 f/
n=l

is also weakly measurable [10, Theorem 4.1]. By the well-known theorem of Kuratowski and Ryll-
Nardzewski there is a weakly measurable selector xe" 12 BM(O of Fe. Because of the separability
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of X, ze is also measurable when BM(O has the norm topology. For a fixed w ( , there is a

subsequence of {xne(w)} (denoted again by {xne(w)} such that

.(,) (,), , - oo

Besides, we may assume that une(w w ue(w) and vne(w v(w) as n oo.

It is clear that

u(w) + re(w) 0 for all w n
Let {eS}sCN be a sequence of positive numbers such that es-"0, as --,oo. We set

xs(w) z%(w) and

() f3 w {(): _> }

As before, we deduce that there exists a measurable mapping x: --X such that x(w) 6 R(w)
for M1 w ft. For a fixed w fl, there exists a subsequence of {x(w)} (which, we agMn denote by

{xs(w)} such that

() (),

Clearly,

us(w) u%(w) u(w) and

u() + () 0 for e n
As in the deterministic case [12], one can prove that

u(w) L(w)x(w) and v(w)= T(w)x(w)

So,
L(w)x(w) + T(w)x(w) 0 for all co e n

i.e., x(. is the desired solution.

REMARK. The sumptions on L e stisfied when L is rdom, wetly continuous,

mimM monotone d L()0 0 for M1 ft. (In pticul, when L is rdom, line, mimM

monotone, with D X). Then, clely, L is wetly closed. In addition, L is jointly meurble.

Indd, if V is y element of X, the operator (, x) (L()x, V) is Cthdory function, hence

meurble. It follows that L is wetly jointly meurable d, since X* is sepble, L is M
jointly meurble.

4. NONLINEAR RANDOM INEQUALITIES.
The threm which follows gives a rdom version of Threm 4 i [9].
THEOREM 4.1. t X be a sepable, reflexive Bch spce, D a convex, closed subset of X

with intAff(D)D # O (i.e. the interior of D, relative to the ne spce generated by D, is non-

empty). If O: flx D X* is multifunction such that:

1) 0() is non-empty, convex d wetly compact subset of X* for M1 fl d x D.
2) The functionM inf (x*, V), where x D, is lower semicontinuous for MI V D- D d

3) There exists a compact set K C_ D and a point Y0 K with the propert inf (z*, x V0) > 0

for all x D\K and w

4) The graph of the multifunction [ftxK (restriction of to txK) belongs to

(R) B(K) (R) B(X*).
Then there exist measurable mappings : fl K and r/: ft X* such that, for all

rt(w
_
’(w)(w) and (r/(w), (w)- y) < 0 for M1 y fi; D.
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PROOF. We consider the multifunction F:fK x X* defined by

F() {(x, z) 6 K x X*" z 6 q)()z and (z, a"- U) < 0 for all y D}

By Theorem 4 of Ricceri [91, we have R() # 0 for all ft. Let {n}n be a sequence of points

of D, dense into D. Note that:

F() {(, ) x X*. () =d (, - ,) 0}
n=l

Defining Fn" K x X* by

Fn(w) {(x, z) K x X*" z e (w)x and (z, x y,) 5 0}

wehavethat GrF= GrFnandthat
n=l

Gr rn {(w, x, z) x K x X*" z e (w)z and (z, z Yn) 0}

{(,.,z)nxgxx*.(z,-v.)O}ins.
Because g and X* are Suslin spaces, it holds B(KxX*)= B(K)@B(X*). The set

{(w,x,z)xgxX*’(z,z-yn)O}, being equM to x{(x, z)e KxX*:(z,x-yn)O}, clely
belongs to B(K x X*). By sumption, Gr x K belongs to

EB(K)@B(X*)=@B(KxX*). So GrFneE@B(gxX*) which in turn implies

GrF EB(K x X*). By the selection threm of Sainte-Beuve, there exists a meurable

mapping h" + K x X* such that h(w) F(w) for M1 w e . If we put h ({, y) it follows that

{" K and y" X* e meurable mappings, that y(w) e (w){(w) for all w e d that

((w), {(w)-y)0 forMlyeDdw.

We shM1 nd the concept of sepability for a rdom function " x X R, where X is a

separable, metrizable d complete space (cf. Shucha-aeid [7]).
Sepable random functions are chacterized in the following way (for the prf, s

Papageorgiou [14]): A random function " xX R is separable, if, d only if, there exists a

countable, dense set D g X and a N , (N) 0, such that for w N and for x X, there exists

a sequence xn D, such that xn x and (w, xn) (w, x).
THEOREM 4.2. Let X be a sepable, reflexive Bach space d K a closed, convex d

bounded subset of X. If T" x K + X* is a random, monotone d demicontinuous operator d

: x K R is a rdom, convex, lower semicontinuous d sepable function, then for each
meurable y" X* there exists a meurable x" K such that

(T(w)x(w)- y(w), x(w)- z) (w, z)-(w, x(w)) for M1 z g d for Mmost M1 w e .
PROOF. We may sume that y(w)=O for M1 w. We consider the multifunction

R" 2K defined by

R() {, K" (T(),,,- z) V(, z)- V(, ,) fo z g}.

From Srowder [15], we have R(w)# for M1 w e . Let D {xn}n e be a countable dense

subset of K d N the -null set postulated by the sepability of . Then, for M1 w N, we

h&ve

R() {. e g. (T()., ..) V(, .)- (,.)}
n=l

We set Rn(w) {x 6 K: (T(w)x, x- xn) <_ (w, xn)-(w, x)}.
By Theorem 3.1 of Papageorgiou [14] the mapping (w, x) (T(w)x, x x,) (w, x,) + p(w, x)

from (f\N)K to I is jointly measurable. So, GrRn f\N(R)B(K) and, consequently,
Gr R f’l Gr Rn EFt\g (R) B(K). Since the measure space (f\N, Et2\g, #) is complete, applying

n--1
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Sainte-Beuve’s selection theorem, we get measurable z: fl\N K such that z(w) R(w) for all

w I\N, i.e.,

(T()(), ()-

Now we prove an existence theorem for random inequalities involving a pseudomonotone operator T
and a random, continuous, convex function o. It would be interesting to prove this theorem with

the same assumptions on as in the previous theorem.

THEOREM 4.3. If T: Q K X* is a random, pseudomonotone and bounded operator and

0: flx K R is a random, convex and continuous function, then for each measurable y: Q X*
th it mm: a Xh that (T()()- (),()- ) _< (,, )- (, ()) o
all z K and Ft.

PROOF. We may assume that y(w)=0 for all t. Let {Xn}nN be an increasing

sequence of finite dimensional subspaces of X, whose union is dense in X. We denote in: Xn X,
the injection mapping of Xn into X, and "* X*3n: Xn, its adjoint. We then define

Tn" flx Kn X, where Kn K Xn, by Tn(w)x j T(w)jnx.
We consider the multifunction Rn(w) {x Kn: (Tn()x, x z) < o(w, z) o(w, x) for all z Kn}.
From Browder [15], we know that Rn(w)# O for all w ft and n N. Let {Zm}mN be a dense

sequence into Kn. We have Rn(w) o {x K,: (Tn(w)x, x- zm) <_ p(w, zm)- p(w, x)}.
rn=l

As in the proof of the previous theorem, we deduce that GrRn E(R) B(Kn) and, by Sainte-

Beuve’s selection theorem, there exists xn: f- K, measurable, such that xn(w Rn(w), for all

w fl, i.e.

(T(w)x,(w), x,(w)- z) <_ p(w, z)- p(w, x,(w)) for all z 6 g, (4.1)

Let F," Ft 2K be defined by Fn(w)= weakcl {xi(w)’i>_ n}, for each n 6 N, and let F" fl 2K be

such that F(w)
n--I

As in the proof of Theorem 3.2, we deduce the existence of a measurable mapping x: t --, K
such that x(w) F(w), for all w f. Fix w f. There exists a subsequence of {xn(w)}, which we

again denote by {Xn(W)}, such that xn(w x(w) 6- g.

Since T is bounded, we may assume (passing to a subsequence, if necessary) that

T(w)Xn(W)u(w). Now, take z K= cl(n= 1Kn). On can easily verify that (4.1) implies

lim sup (T(w)xn(w),xn(w) z) <_ p(w, z)- p(w, x(w))

Putting z x(w) g in (4.2) we get:

lim sup (T(w)x.(w),x.(w)- x(w)) O

The pseudomonotone property of T(w) implies

u(w) T(w)x(w) d (T(w)x,(w), x,(w)) (T(w)x(w),x(w))

So, inequdity (4.2) becomes:

(T(w)x(w),x(w)- z) T(w, z)- T(w, x(w)), for y z e K.

REMARK. Our result generMizes Theorem 24 of [16].
5. A RANDOM HAMMERSTEIN INTEGRAL EQUATION.

We study now a rdom nonline Hmerstein integrM equation of the form

(, ,)+ g(, , )(, , (, ))d (, ) (.)
A

where fl d A e a-finite meure spaces. Without loss of generMity, the function w(w, x) may be
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taken to be zero. Let < p,q< oo, such that- + ql_ 1.

THEOREM 5.1. Let f: flx A x R R be a function such that:

1) For all u(SR the function (w, y) f(w, y, u) is meurble and for Ml (w,y)Qxa the

function u f(w, y, u) is continuous.

2) There exists functions a(w, y), with a(w,. L (A) for all w fl and b(w) > 0 such that:

]f(,Y,u) (,Y)+b()]u] p- forgiven, yA,

3) For M1 fl and V A, f(, V, u) is strictly monotone increing with respect to u, i.e.,

u > u’ f(w, V, u) > f(w, V,

4) There exist functions Cl(W V), with Cl(W,- LI(A) for M1 w n d c2(w > 0 such that:

f(, y, u)u c2() u P-c(, y) forMlwfl, y a, u

5) There exists a function c: + , with c(r) + r + , such that:

f f(, y, (y))(v)dy c( p) p fo M1 u LP(A).

And let K: fl x Ax be a function such that

6) (, , v) K(, , v) is mume.
The operator v(-) w(. [K(w,. ,y)v(y)dy maps Lq(A) into LP(A) for MI w ft.7)

A

AA

Then there exists a function u: flx A , jointly meurable, with u(w, LP(A) for a.a. (Mmost
M1) w fl, which satisfies (5.1) for a.a w fl d a.a. x A.

PROOF. Consider the operator N()u(. )= y(,.,u(. )). For every n, we know, by

sumptions 1) d 2), that N(w)(. )is a bouda, otio oto fom Z(A)into Lq(A).
Also, from 3) and 4), it follows (s Browder [17, Proposition 1]) that for each w fl, N(w)(. )is
operator of type (S+), hence, Mso, of type (M).

Fix u e L(A) =d consider the map N()u. We hae

A
By sumption 1), the function (, V) f(w, V, u(v)) is meurable, hence

(, v) f(, v, u()) q

is meurable d so, by Fubini’s threm, w [ If(w, , u(V))lqdv is so meurable. Therefore,
A

the above set is meurable and this proves that N(w)u is meurable. So

N: x L(A) L(A) is r=dom.
Also, sumption 5) mes that, for M1 w fl, N(w)(. is a crcive operator, i.e., N is

crcive.

Next, we consider the line integrM operator B()(. defined by

From sumption 7), for each v n, B()(. )i# operator mapping Lq(A) into LP(A). Hypothesis

8) me=s that B(w)(. )is sitive, so, being line, is Mso monotone. It follows that B()(. )is
continuous.

Now fix v Le(A) d consider the mapping B()v. We hve

By sumption 5), the function (w, x, V) K(w, z, )lvv) is meurble,’ therefore the se holds

for
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and for

and, finally, for

So, the above set is measurable and this proves that w --, B(w)v is measurable, i.e.,

B" f Lq(A) --, LP(A)
is random. Rewrite equation (5.1) as

u(w) + B(w) N(w)u(w) 0. (5.2)

Invoking Theorem 3 in [4] we conclude that (5.2) has a solution fi B(ft, Lt’(A)). By Theorem

III-17 of Dunford Schwartz [18] we deduce that there exists u" fx A - R, jointly measurable such

that u(w,. fi(w)(- for a.a. w q ft. So u(w,. L’(A) for a.a. w fl and u(w, x) satisfies (5.1) for

a.a. w E f and a.a. x E A.
REFERENCES

1. ENGL. H.W., Random Fixed Point Theorems for Multi-valued Mappings, p.a.cific J,
76 (1978), 351-360.

2. ITOH, S., Nonlinear Random Equations with Monotone Operators in Banch Spaces, Math.
Ann. 236 (1978), 133-146.

3. ITOH, S., Random Fixed Point Theorems with an Application to Random Differential
Equations in Banach Spaces, J. Math. Anal. App!., 67 (1979), 261-273.

4. KRAVVARITIS, D., Nonlinear Random Operators of Monotone Type in Banach Space, .!.
]Jath. Anal. Appl. 7_ (1980), 488-496.

5. KRAVVARITIS, D., Nonlinear Random Equations Involving Operators of Monotone Type, J.
..M_ath. Anal. Ap.p..kl. 114 (1986), 295-304.

6. PAPAGEORGIOU, N.S., Random Fixed Point Theorems for Measurable Multifunctions in
Banach Spaces, Proc. Amer. Math. Soc. 97 (1986), 507-514.

7. BHARUCHA-REID, A.T., Random Integral Equations, Academic Press, New York (1972).
8. PADGETT, W. and TSOKOS, C., Random Inteal Equations with_ Applications to Life

Sciences and Engineering, Academic Press, New York (1976).
9. RICCERI, B., Un th6orme d’existence pour les in6quations variationalles, C.R. Sc.

Paris, t. 301, S6rie I, n 19, 1985.

10. HIMMELBERG, C.J., Measurable Relations, Fund. Math. 87 (1"975), 53-72.

11. SAINTE-BEUVE, M.F., On the Extension of yon Neumann-Aumann’s Theorem, J. Funct.
Anal. 17_ (1974), 112-129.

12. KRAVVARITIS, D., Nonlinear Equations and Inequalities in Banach Spaces, J. Math. Anal,
Appl. 67 (1979), 205-214.

13. PASCALI, D. and SBURLAN, S., Nonlinear Mappings of Monotone Type, Editura Academiei,
Bururesti, 1978.

14. PAPAGEORGIOU, N.S., On Measurable Multifunctions with Applications to tLdom
MultivMued Equations, Math. Japonica, 32 (1987), 701-727.

15. BROWDER, F., Nonlinear Variational Inequalities and Maximal Monotone Mappings in
Banach Spaces, Math. Ann. 183 (1969), 213-231.

16. BREZIS, H., Equations et In6quations non Lin6aires dans les espaces vectoriels en Dualitt,
Ann. Inst. Fourier, 1_ ! (1968), 115-175.

17. BROWDER, F., Nonlinear Functional Analysis and Nonlinear Integral Equations of
Hammerstein and Urysohn Type, Contributions to Nonlinear functional analysis, 425-
500, Academic Press (1971).

18. DUNFORD, N. and SCHWARTZ, J.T., Linear Operators, I, Wiley, New York (1958).


