
Internat. J. Math. & Math. Sci.
VOL. 15 NO. 2 (1992) 273-278

273

DERIVED LENGTH FOR ARBITRARY TOPOLOGICAL SPACES

A.J. JAYANTHAN

School of Mathematics and Computer/Information Sciences
University of Hyderabad

Central University P.O. Hyderabad 500 134
India

(Received February 8, 1988 and in revised form February 15, 1989)

ABSTRACT. The notion of derived length is as old as that of ordinal numbers itself. It is also known as

the Cantor-Bendixon length. It is defined only for dispersed (that is scattered) spaces. In this paper this

notion has been extended in a natural way for all topological spaces such that all its pleasing properties are

retained. In this process we solve a problem posed by V. Kannan. ([ 1] Page 158)
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0. PRELIMINARIES.

Suppose (X,x) is a topological space. We denote the set of all limit points of a subsetA ofX byA 1.

The space X is denoted by X. As induction hypothesis, we assume that Xt is defined for all 0 I < t.

Now we define A as follows.

[I,X if t is a limit ordinal

[(XI) if t- [ + 1.

So we obtained a chainX X DX =)... A :9Am D By standard arguments on the cardinality

of the space X, one can show that there exists an ordinal number t such tharA -Am/

PROPOSITION 0.1- For any topological space X, the following are equivalent:

(i) There exists an ordinal number t such thatAm is empty.

(ii) Every nonempty closed subspace ofX contains an isolated point.

(iii) Every nonempty subspace ofX contains an isolated point.

(iv) X does not contain a dense-in-itself subspace.

PROOF. Omitted. (See [1] and [2])
DEFINITION 0.2: A topological space X satisfying any one of the above equivalent conditions is

called a dispersed (or lfdfl!.g.L) space. From statement (i) of Proposition 0.1, we observe that for any

dispersed space X, there exists an ordinal number t such that A is empty. We define the derived length

of a (dispersed) space X as inf{a: X O} and denote it by d(X) or d(x) where x is the corresponding

topology considered on X. [3,4].
First we observe some properties of derived length.
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THEOREM 0.3: For a dispersed space X, d(X) satisfied the following properties.

(i) For a subspace Y ofX, d(Y) d(X).

(ii) d(X) is smaller for finer topologies.

(iii) d(Y) d(X) if Y is a continuous open image of X.

(iv) IfX is a compact space and Y is a Tt-space such that Y is a closed continuous image ofX, then

d(r) d(X).

(v) IfX is the topological sum of a class {X/: tE I} of dispersed topological spaces, then X is

dispersed and d(X) sup{d(X/): EI}.
REMARK: A proof of this theorem can be found in ]. This is also a consequence of later results

of this paper.

1. d(X) FOR ALL SPACES.

Suppose (X,) is an arbitrary topological space and A is a subspace of X. A chain,

A A0 (=A C:... (=A, C... of subsets ofX is called a K-chain onXwith base setA if for all ct, Ao \Aa
is contained in A,\A for all 15 < ct. By standard arguments on cardinality of X, we can prove that there

eists an ordinal number ct such thatA,-A,/ 1. We call inf{ct: A,-A,/x the length of the chain. For

notational convenience, hereafter we denote any K-chainA0 (=A1 C:... C:A C: Aa C:... or simply by
without mentioning the indexing set or base set explicitly. The length of"the chain {A,} is denoted by

({A,). We define the length of a topological spaceXas sup{l ({A,): {A,} is a K-chain in X} and denote

it as (X). (X) can be verified to be a topological invariant. Now, we first note that satisfies all those

properties of derived length given in Theorem 0.3.

THEOREM 1.1:1 (X) satisfies all five properties (i) to (v) of Theorem 0.3.

PROOF. Since the proofs ofstatements (i), (ii) and (v) are routine, we omit them. Weprove statements

(iii) and (iv) here.

(iii) Suppose ]’is an open continuous map from Xonto Y. To prove (Y) (X), we consider an

arbitrary K-chain {B,} in Y. Define A,- ]’-(B,).
CLAIM: {A,} is also a K-chain and ({A,}) ({B,}).

For, suppose x is a point in A,/\A and Ux is an open neighborhood of x. Then, f(Ux) is an open

neighborhood of]’(x) tE B,/ \B,. Since {B,} is a K-chain, ]’(Ux) meetsB,,\Bl for all I < a. Hence Ux meets

A,\AIfor all I < a. Thus, we have proved that {A,} is a K-chain. Also it is obvious thatA, \A, is nonempty
for all ct such that B,/ I\B, is nonempty. This establishes the claim that ({A,}) ({B,}). So we have

(Y) sup{/({B,}) {B,} is a K-chain in Y} sup{/({]’-(B)} {B,} is a K-chain in Y} sup{/({A,})
{A,} is a K-chain in X} (X).

(iv) Let X be a compact space, Y be a T space and ]’be a closed continuous map from X onto Y.

We show (Y) $1 (X).

As in Off), we start with a K-chain {B,} on Y. A K-chain {A,} in X is defined as follows: Ao f-(Bo)

a,U?a

if ct is a limit ordinal

[Af3U f-(B,\B)CI ,,IA if ct- 15 + 1.
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CLAIM: {A,} is a K-chain and ({A,}) ({B,}).
ObviouslyA,/ I\A, is contained inA,\A for all < by definition. Hen, it is enou to show at

A+tA is nonempty for all such atB+B= is nonemp. We prove is ing (transfinite) induction.
But f(A.A is confined in Bo+tB by definition. , it is enough to show atB.tB is contained

in A.A). Suppose - 0 and y belongs to BilBo Co-f0)C) cause f is closed). en
f-)Xo is nonempty. Hence, ere exism a intx in0f-(BBo) such atf(x) y. Now, aume
that f(Aa) ntains Barb for all y < < Oy induction).
CE 1: + 1 ( is not a limit ordinal).

Suppose y belongs toBB. SinceB B is contained (BB) C AA) and hence is

contained in a), there exism a intx in f-l(BaBa)(a) such at/(x) y.
]

CASE 2: is a limit ordinal.

Here, y is in B+B and hence in BBa for all <. y belongs to BoBaC
/

f(AAa) C f(AAa) _’AAa] (becauA,Aa is a decreasing chain). SinceX is compact and

A,Ap is nonempty for all < there exists a int x in A,Ap such that f(x) y. Since is a limit

ordinal, f(A+A) contains B+A follows om induction hypothesis and e definition

ofA. us, (iv) is proved.

Our next aim is to show at (X) is a natural extension of e derived lense. For is puose we

Oefine a new ordinal invariant ’(X) on topologil spaces. ’(X) is defined as sup{a: a is me derived

length of a finer disperd tology on. We now prove

THEOM 1.2: For any topological space X, it is e at I’(X) + 1 (X).
PROOF: Suppose x is a finer dispersed topology onXwith derived length d(x). en, one can prove

that {: 0 < a s d(), is defined with respect m } is a Khain with e t of all isolated in
of as the ba t, and’ 1+ e length of this chain’ is equal to d(x). so any Khain in a finer topology
is a K-chain in Se original topology and hence we conclude that I’(X) 1 + (X).

For e revere inequality, we consider a Khain {A,} in X. Our aim is m define a finer disperd
topology onXsuch at Se derived length of Sis topology coincides with (A). For is, we define for
each x in X a new neiborhd system as follows, ffx is a int inA+A for me ordinal number

(that has to be ique), then {(VA)O{x: V is a neiborho ofx ine Original topology} is declared

as the new neighborhood system at x, and x is isolated otheise. One can verify that is defines a finer

topology on Xwho open ts n be described as follows: ’A subt V ofX is open if and only if for
each ordinal number a and for each int x in V(A+A), it is true that there is a neighborhood V ofx

in the original polo such at VA is contained V.’ uivalently, is topology is generated by
the hmily {V DX: either V is open in the original mpoio or V AU{x} for me point x in

and for me ordinal number or V is contained in A0 or V is disjoint om OA}. One n now prove

that -X and for each ordinal number 1, (in e new pology)- (Ap)(pAp). It follows at
this new topology is disperd and has derived length equal m ’1+ the length ofe K<hain {A}’. us,
I’(X) + (X). Hence, e proof ofe theorem is mplted.

COROLY 13: For a dispersed space X, d(X) 1 + (X) I’(X).
PROOF: is follows immediately om (ii) of theorem 0.3.
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REMARKS: 1. The above corollary 1.3 justifies the title of the article. The fact that the definition

of the length of a space does not involve dispersedness at all whereas l’ is completely dependent on the

derived lengths of finer dispersed topologies, is quite interesting (.’. l’ + ). The above corollary that

d(X) + (X) for a dispersed space X can be proved directly also.

2. If we observe carefully theorem 1.2, we can easily see that is uniquely determined among all

ordinal invariants in topology by the following three properties.

(i) is smaller for finer topologies.

(ii) coincides with derived length for dispersed spaces.

(iii) is minimal with respect to (i) and (ii).

Also, as an extension of d(X), which is our main interest in this article, is uniquely determined by

(i) and (iii).

2. d(X) IN TERMS OF ORDER OF A MAP.
In his memoir ], Kannan, defined an ordinal invariant 6 for all topological spaces. The problem of

characterizing 6 intrinsically is left open there [F.4]. We solve this problem here in this section. In fact,

the length of a space we defined above happens to be in intrinsic characterization of 6. We first recall the

definition of 6 given in ].
DEFINITION 2.1: Let X be an arbitrary topological space chosen and fixed. Let Y be any other

topological space and f: Y X be a continuous function. For any subset A and X, we let A-A and

A f(f-(A )). As induction hypothesis, we assume that/ is defined for all [ < ct. Now, we letA? (A))
if t [ + 1, a nonlimit ordinal number, andA iaA if t is a limit ordinal.

Thus,A is defined for every ordinal t. By a standard argument on the cardinality of X, one can

verify that there exists an ordinal number t such that A’-A’/ Now we define

o(A,f) inf{ct: A? A }. The order of the mapfis defined as sup{o(,4,f): A is a subset ofX and is

denoted by o(f). Finally, 6(X) is defined as sup{o(f): f: Y X is continuous, Yis any topological space}.

The existence of 6(X) as well as o(f) can again be established using cardinality arguments. One can check

that 6 is also a topological invariant. The following theorem solves the problem of Kannan.

THEOREM 2.2: For any topological space X, (X) 6(X).

PROOF. First we prove that (X),. 6(X). For, suppose f: Y X is a continuous map from an

arbitrary topological space Y and a is a subset ofX.

CLAIM: {A’} is a r-chain and ({A}) o(,jO.

Throughout the proof of this claim we denoteA asA, for notational convenience. We have to prove
that for any ordinal number t, A,/\A, is contained in A=\Aa for all [ < t. We use (transfinite) induction

on to prove this. SinceA\Ao is contained inA0 can be verified without difficulty, the case t 0 follows

immediately. Now, we assume thatAl \Al is contained inAl\A for all < [i < t. To show thatA,/ \A,
is contained in A,\Aa for all [I < suppose x belongs to A,/ \A,. Then, x is in A, f(f-(A=)). So

f-(x)N-f-(A is nonempty. Hence there exists a point y in f-(x)Nf-l(A=). Therefore every

neighborhood ofy meets f-(A,0. Since fis continuous, this shows that every neighborhood ofx meetsAa.
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CASE 1: a [ + for some ordinal number

In this case, it is enough to show that x belongs to A,\A. Suppose we assume that there exists a

neighborhood Ux of x such that U, f3(A,\Ao) is empty. Then, J’-(Ux) is a neighborhood of y such that

J’-(U,) f3]’-(A,,)is contained in f-(A). But x is not inA, ]’(f-(Al) and hence ]’-(x)flJ’-(A) is empty.

Therefore there exists a neighborhood Vy of y such that Vy f3/’-(A) is empty. Hence, Vy CI/’-(U,) does

not meet f-(A,\A) U.f-(A) f-(A). This is a contradiction to the fact that y is in f-(Aa).
CASE 2: c is a limit ordinal number.

Here,A, U AI. In this case, x is not inA, U A, [’-J f(f’-(Ao)) implies thatx is not in f(f-t(Ao))
for any < . Hence, for any given ordinal number < there exists a neighborhood V0 of y such that

V f3f-(A0) is empty. Now, ifx does not belong toA\A0 for some < then there exists a neighborhood

U ofx such that UN(AQ\A) is empty and hence f-(U0) does not meet f-(A\A0). So the neighborhood

/’-(U) V of y loes not meet f-l(A) (as earlier). This again is a contradiction. Hence, the claim is

proved. Thus, we have o(A,f) ({AQ})= ({A’}) and hence the inequality (X) X).
For the reverse inequality (X) (X), we consider an arbitrary K-chain {A,} in X with base set A.

We construct a topological space and a continuous function f: X such that o(f) ({A,}). For each

ordinal number o., let I. A \Awith relative topology from

ith the topology generated by { V: V is a subset ofA, , either Vis an open subset ofAor V (AQkAo) U{x
for some x inA,/ lkA and some < a}. Finally, is the disjoint topological sum of all these ,’s. A map

(canonical) in , for some . So y is inA \A for a unique a. Define this point in X as the image ofy

under/(. It is easy to verify that f is continuous and o(A0, ({A}). This proves the reverse inequality

o() (). Thus, the proof of the theorem is complete.
REMARK. One can prove more results on the length of a space such as perfect maps decrease the

length, etc. The reader should consult 1] for more details. One natural question is that "which properties
of the derived length of dispersed topological spaces remain true for the length of general topological

spaces?" A map is called finite-to-one if the inverse image of every point is a finite subsets of the domain.

It can be proved that ifX is a compact Hausdorff dispersed space and f is a finite-to.one continuous map
from X onto where is a Hausdorff space, then d(X) d(). But we do not know whether this is true

for the length of arbitrary compact Hausdorff spaces. Let Xand be arbitrary compact Hausdorff spaces
such that is a continuous image ofX. Then using theorem 1.1 (iv), one can prove that () (X). It is

interesting to know whether (X) () or not when is a finite-to.one coatinuous image of X.
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