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ABSTRACT. Type and cotype are computed for Banach spaces generated by some positive sublinear

operators and Banach function spaces. Applications of the results yield that under certain assumptions
Clarkson’s inequalities hold in these spaces.

KEY WORDS AND PHRASES. Type, cotype, Clarkson’s inequalities.
1991 AMS SUBJECT CLASSIFICATION CODE. Primary, 46B20.

1. INTRODUCTION.

Given a Banach space X, we let for any n !1, p s 2 q < oo and s s < o, Ko’.)(X) and Kt,.s)(X be

x CX, where {r" }’. denotes the sequence of Rademacher functions defined byfor every choice of i}i.l
r,(t) sign sin 2"tr for 0 s 1. If the left (resp. the right) inequality in (1,1) holds, X is of cotype (q, s)

(resp. type (p,s)). If s 1, we say thatX is of cotype q (resp. type p) (see [6]).
The notions of type and cotype have appeared in various problems involving the analysis of vector

valued functions or random variables. One of the great advantages of the classification of Banach spaces
in terms of type and cotype is the existence of a rather satisfactory geometric characterization of these

notions. For example Maurey and Pisier [8] showed that a Banach space X is of type p for some p >

(resp. cotype q for some q < oo) iffXdoes not contain l"s (resp. g’s) uniformly.

Note that ifX is of type (p,p’) with K"P’)(X) 1, <p s 2 (resp. cotype (p,p’) with K0,.,,)(X 1,

2 p < oo) and 1/p + 1/p’ 1, then Xverifies Clarkson’s inequalities, i.e., for every x, y X, we have

(11 x II" / y (1.2)llx Yll’+ IIx +yll"’

(1 )l/v (1.3)resp. x y + x + Yll" (11 xll ’ + Y I1"’)’’
Clearly (1.2), (1.3) implies that X is uniformly convex.

the smallest constants for which
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The well-known examples of Banach spaces for which the above inequalities hold are L,-spaces (see

[2]), p-Schatten ideals of compact operators on Hilbert spaces (see [9]), provided 1 <p <

In [10] Milman showed, using interpolation techniques that if C: R" is a domain with minimally

smooth boundary, then the inequality (1.2) applies to Sobolev spaces W() for < p 2. Further Cohos

3], using the above observation, proved that the inequalities (1.2) and (1.3) hold in W() for every domain
C R" and <p < o. In the same way Cobos and Edmunds in [4] showed that some Besov spaces and

Triebel-Sobolev spaces verify Clarkson’s inequalities.
In this paper we compute the type and cotype for spaces of large class of Banach spaces generated

by some positive sublinear operators and Banach function spaces. This class includes for example:
interpolation spaces determined by the real method of interpolation, Besov spaces, Triebel-Sobolev spaces

(see ],[ 11],[ 12])H’-spaces, an approximation space, L’(Ix,X)-spaces and the other (see for example [5]).
We also show that under some conditions Clarkson’s inequalities hold in these spaces.
2. PRELIMINARIES.

Let (,gt) be a complete o-finite measure space. If X is a Banach space, we denote by

L(X) -L(f, ix,X)the F-space [i.e., complete and metrizable topological vector space of all equivalence

classes of all Ix-Bochner measurable X-valued functions on . IfX R, then we write L LO(,l.t).

A Banach space E CL is called a Banachfunction space if Ix[ Y[ -a.e. on , x

_
L and y IE E

imply thatx tEE and [lll
Recall that a Banach function space E is called p-convex (resp. p-concave), p < oo if there exists

a constantM so that for all x,...,x,, E, we have

The smallest possible value ofM is denoted by M’)(E) (resp. M0,E)).
In what follows letX be an F-space and let S be a positive sublinear operator defined on .X’ taking

values in L* -L*(, Ix); that is for every x,y tEX and any scalar . the following hold:

(i) Sx 0,

(ii) S(),x) )q Sx,

(iii) S(x + y) Sx + Sy.

For a given Banach function space E CL* and injective operator S:X.- L*, we define

De(S)- {xX :Sx E).

IfE -(L,, "11,), we write in short D, instead ofDe(S), where Ilxll, -(f= Il’d)’ for

Throughout the paper, we assume that De(S) is a Banaeh space with the norm defined by

Ilxllo- Sxll.
We say that a pair (E,S) is admissible provided that for any A with I.t(A) < =0, we have

xSx,O in E

for every sequence {x, } CDe(S) such that x, 0 in X. Here Xa is a characteristic function ofA.
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3. RFULTS.

Let (T,v) and (, I.t) be measure spaces. In the sequel for any x x. tE.X" and f ,f. @L(T,v),

we write

f (R)xk(t)- A(t)xk for ttET.
-1 k-I

An easy proof of the following lemma may be omitted.

LEMMA 3.1. Let ft, ...,f, L(T,v) Then the following hold:

(i) Forallx x. Xandforanyo2 S .lf(R)x (co)tEL*(T,v).

(iii) lfa measure space (T,v) is finite, then for allx x. Xand fl f. Lp,

THEOREM 3.1. Assume that (T,v) is a finite measure space. Let E be a Banach function space

and let f
(i) IfE isp-convex, then for allxl,...,x X-De(S), we have

(ii) IfE is p-concave, then for all xl xn X, we have

PROOF. First of all, suppose that , k 1, ...,n are step Nnctions. We can cerinly assume at

cx,, withA C r measurable, paiise disjoint and r A. en for C -Me(E), we have
i-I i-1

(by p convexity)
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Now assume that in the squence {f}k-, f with k 2 ,n are step functions. Take any sequence

{gi}- in L’(T,v) f step functions such that gi "- v-a.e, on T, and gi --*f in L’(T,v). From this, we

easily get that

and

aj S gj (R)x +2 (R)x, dv

Since a Cb by previously proved inequality, we obtain desired inequality. Thus, by iterating the proof

of (i) is complete. The proof of (ii) is similar.

Let us define on a F-spaceX a family of semi-norm "1 by Ix[ Sx(co) for every co . Now the

main theorem of the paper is immediate.

THEOREM 3.2. Assume that < p < do and s < oo. Let E be a Banach function space and let

K=D(S).

(i) IfE is p-convex, < p 2, and s-concave, andfor all xi ,x, GX

ri(t)x C llXil l-a.e., (3.1)
k-1

thenX is oftype (p, s with Kte’s)(X) C,(p s CM")(E)Mts)(E ).

(ii) IfE is p-concave, 2 p < , and s-convex, andfor all x, x, X

Ix a.e., (3.2)

thenX is of cotype (p,s) with Ko,.,

COROLLARY 3.1. 1.f the conditions o.fTheorem 3.2 are satisfd with s -p’ and Ct(p,s)-

(resp. C2(p,s)- 1), then Clarkson’s inequality (1.2) (resp. (1.3)) holds.for De(S).
PROPOSITION 3.1. Let (Le,S) be an admissible pair, ,:p <oo. Assume that De CX with con-

tinuous inclusion and thatDe is a non-closed subspace in 3C. Then De is not type r (resp. cotype r).for any
r > p (resp..for any r < p).

PROOF. The above assumptions imply that for any e > 0, De contains (1 + e)-isomorphic copy of e

(see [7]). Since type and cotype is inherited by subspaces, then the proof is finished.

In the theory of type and cotype the type and cotype indices of a Banach space B which are defined

as follows

p(B) sup{p: B is of type p},

q(B)= inf{q: B is of cotype p}
are important (see [8] for details).
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COROLLARY 3.2. Assume that the assumptions ofProposition 3.1 are satisfied. LetX-De.

(i) If <p 2 andfor all xl ,x, X

r,(t)x C Ylx,l" x-a.e.,

then p(X) p.

(ii) If2 p < oo andfor allx x, EX

i.,Ixil c i.ri(t)xl todt Ix-a.e.

then q(X) p.

PROOF. Since Le isponvex andponcave Banach nction space, we haveX is of type ,p) for

< p 2 (resp. cotype ,p) for 2 p < ) by eorem 3.2. order to finish the proof it suffices to apply
a result of hane (see [6, eorem 1.e.13]) and Proposition 3.1.

4. EMPL.
We give o general examples injective and sitive sublinear operators tisfying the inequalities

given in eorem 3.2.

t (,) be a measure space and letX an F-space. Fix <q < and aume that {T,}. is a

sequence of injective linear operators, Tt:X L(,), such Sat

Then obviously e opetorS: L is injecfive, sifive sublinear. For is operator, we have

(ii) If2 q p < , enfor aHx ,x, X

PROOF. We have .e,l)- 1 for all 1 < q 2 and by a duality argument ’e’)(lt)- for all

2 q < (see 10]).
Now aume that 1 < p q 2. en by q’ p’, it follows that
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for all xt, ...,xn X. The proof of (ii) is similar.

LetX be a Banach space and letX L(f2,1,X). Define an injective, positive sublinear operator S:

X-- L(f,tt) by

I1 (,o)11 , ,o

Then the Banach space De(S) is well-known and is denoted by E(X). Clearly the inequality (3.1)

(resp. (3.2)) is equivalent to the fact that X is of type (p,s) (resp. cotype (p,s)).
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