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ABSTRACT. Let GF(q) denote the finite field of order q pe with p odd. Let M denote the ring of

2x2 matrices with entries in GF(q). Let, denote a divisor of q-1 and assume 2 <, and 4 does not

divide ,. In this paper, we consider the problem of determining the number of ,- th roots in M of a

matrix B E M. Also, as a related problem, we consider the problem of lifting the solutions of X2 B

over Galois rings.
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1. INTRODUCTION.
Let GF(q) denote the finite field of order q p" with p odd. Let M denote the ring of 2x2

matrices with entries in GF(q)..Let n denote a positive divisor of q-1: In this paper, we consider

the problem of determining the number N N(n, B) of n- th roots in M of a matrix B E M; i.e., the

number of solutions in M of the equation

Xn=B (1.1)

Our present work generalizes a recent paper of Donovan [I] in which the quadratic equation

x2 B is solved over the ring M.

As a related problem, we also consider the problem of lifting solutions of equation (1.1), for

n 2, over Galois rings. The Galois ring of order prm, denoted by GR(pr, rn), can be obtained as a

Galois extension of Zpr of degree m. The reader can find further details about Galois rings in the
reference [4].

If B denotes a scalar matrix, a multiple of the identity matrix, then equation (1.1) is called
"scalar equation ". Scalar equations have been already studied by Hodges in [2]. In particular, if
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n 2 and B denotes the identity matrix, then the solutions of (1.1) are called "involutory matrices".

Involutory matrices over either a finite field or a quotient ring of the rational integers have been

extensively researched, with a detailed extension to all finite commutative rings given by McDonald

in [51.
2. OVER FINITE FIELDS.

Let GF(q) denote the finite field of order q pe with p odd. Let M denote the ring of 2x2

matrices with entries in GF(q) and let GL denote its group of units. For each B in M let S(B) and

[B] denote, respectively, the stabilizer and the conjugate class of B defined by

and

S(B) {A E GL:AB BA} (2.1)

Thus

[B] {ABA- I:A e GL}. (2.2)

I[B]I [GL:S(B)].

Now for the purpose of the present work we will need the following stabilizers:

(2.3)

(i) S((: Oa))-- GL(q
(ii)

We now give a series of lemmas from which our main result, Theorem 6, will follow.

LEMMA 1. Assume Tn B for some T and some non-scalar B in M. Then $(T)

PROOF. Since B is non-scalar, the minimal polynomial of T is a quadratic polynomial

IT(Z) x2 + az + b. Therefore, B Tn dT + eI for some constants e ad 0 # d in GF(q). Thus,
$(T) S(B).

LEMMA 2. If n _> 2 then the number of matrices T in M so that Tn 0 is q2.
PROOF. Tn 0 if and only if the minimal polynomial of T is either x or z2. Hence, Tn --0 if

=. i.. to (? T,e 

I{T M:Tn 0}] I[A]I + I[B]I

[GL:S(A)I + [GL:S(B)I

/ q(q 1)(q2 1)/(q2 q)

q2.

LEMMA 3. Let 2 < n denote a divisor of q-1 and assume that 4 does not divide n. For each r in

GF(q)* the number of distinct matrices T in M such that Tn= diag(r,r) is given by
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a) n + (q2 q)(n- 1)n/2 if rEGF(q)n

b) (q2_q)n/2 if r GF(q)n but r2 $ GF(q)n

c) 0 if r2 GF(q)n

PROOF. Let w denote a primitive element of GF(q) and write r wm for some integer _< m < q- 1.

Then Tn =diag(r,r) if and only if the minimal polynomial of T divides I(z)=zn-wm. Now. if

D (n,m) denotes the greatest common divisor of n and m, then we obtain

D-1

+m/D)H (zn/D- w(q 1)i/D

i=0

D-1

i=0

We also see that w(q-1)i/D+rn/D does not belong to GF(q)s for every odd prime factor s of

n/D. Therefore, by [3, ch. VIII, Th. 16], hi(z is irreducible over GF(q) for all i. Thus, n/D 1,

n/D 2 or there are no matrices T so that Tn diag(r,r).

CASE 1: n/D 1. Then n divides m and T"= diag(r,r) if and only if the minimal polynomial

of T is either z-a or (z-a)(z-b) where a and b denote two distinct roots in GF(q) of the equation

zn =r. Hence, Tn =diag(r,r) if and only if T is similar to either A =diag(a,a) or B =diag(a,b).

Therefore,

I{T M: Tn diag(r,r)} =hi[all

+f q(q-l(q2-1)
(q- 1)2

n + (q2 + q)(n 1)n/2

CASE 2: n/D 2. Then n/2 divides m and Tn diag(r,r) if and only if the minimal polynomial
of T is a quadratic irreducible polynomial of the form z2- where c denotes a root of the equation

( c)Therefore,zn/2 r. Thus, Tn diag(r, r) if and only if T is similar to A
0

I{T M:Tn --diag(r,r)}
q(q- 1)(q2- 1)n
(q- ,)(2)

if r f GF(q)n but r2 GF(q)n.
LEMMA 4. If Tn diag(h,k) with h # k, then T diag(r,s) for some r and s in GF(q).

PROOF. Let f(z)= z2 +az +b denote the minimal polynomial of T. So, T2=-aT-hi and

cT + el diag(h,k) for some c and in GF(q). Therefore, T diag(r,s) for some and s in GF(q).

LEMMA 5. A non-scalar 22 diagonalizable matrix over GF(q) is a n-th power in M if and

only if its eigenvalues, necessarily distinct, axe n- th powers in GF(q).

PROOF. Assume T to be non-scalar and diagonalizable so that for some matrix P in GL,

PTP-1 diag(h,k) where h # t are the eigenvalues of T. If h and t are n-th powers, say h rn and

t sn, then
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T P- ldiag(h,k)P P- l{diag(r,s))nP (P- ldiag(r, slP)n.

Conversely, suppose T Nn and T is diagonalizable. Say P-ITp =diag(h,k) where h k are the

eigenvalues of T. Hence

diag(h,k) P- 1Tp P- 1Nnp (P- 1Np)n.

Therefore, by Lemma 4, P-1Np diag(r,s) with rn h and/:n s.

THEOREM 6. Let B denote an element of M. Let n denote a divisor of q-1. Assume 2 < n

and 4 does not divide n. Then B has

(a) more than n2 n- th roots in M if and only if B rl for some r in GF(q) so that r2 E GF(q)n.
(b) exactly n2 distinct n- th roots in M if and only if B has unequal nonzero eigenvalues which are

n-th powers in GL(q).

(c) at most n distinct roots in M, otherwise.

PROOF. If B rl for some r in GF(q), then, by Lemma 3, T has

(i) more than n2n th roots if and only if r2 E GF(q)n and

(ii) zero n-th roots if and only if ,.2 q GF(q)n.
We now assume that T is non-scalar.

CASE 1: B diagonalizable. Then by Lemma 5, B is a n-th power in M if and only if its

eige,nvalues, necessarily distinct, are n- th powers in GF(q). Therefore, B has exactly

(iii) n2 distinct n-th roots in M if and only if B has unequal nonzero eigenvalues which are n-th

powers in GF(q) and

(iv) zero n- th roots otherwise.

CASE 2: B non-diagonalizable. Then the minimal polynomials of both B and T are either:

quadratic irreducible or quadratic perfect square polynomials. We also see that if Tn= B then the

minimal polynomial of T is a factor of IB(zn) where IB(Z) denotes the minimal polynomial of B.

Therefore, there are at most n possible minimal polynomial IT(Z). Further, (P-1Tp)n= B if and

only if P ,q(B). Therefore, since [S(B):S(T)] by Lemma 1, B has at most n distinct n- th roots

in M.

3. LIFTING SOLUTIONS.
Let GR(pr, m) denote the Galois ring of order prrn with t’ odd. For purposes of construction and

ease of implementation of Galois rings, one can construct GR(pr, rn) by considering (zpr)[zl/(I) where

I is a monic irreducible polynomial of degree rn _> over the finite field GF(prn) GF(q) with p

prime. Further details concerning properties of Galois rings can be found ia the reference [4].
In this section, we will consider a special case, n 2, of hfting solutions over Galois rings.

More specifically, we will prove the following
THEOREM 7. Let M(pr+l,rn) denote the ring of all 22 matrices with entries in

GR(pr+ 1,rn). Let A denote an element of M. Assume that , the reduction of A modulo p, is a

(a bd) M(pr, m) denote a solution of X2= A (rnodnon-scalar invertible matrix in M(p,m). Let X
c

lr). Then X o can be hfted from M(lr,m) to M(Ir+ 1,m) in

(a) a unique way if # 0.

(b) q prn different ways if either 0 or # 0 and 0.

(c) q2 p2m different ways if # 0 and 0.

PROOF. Let x=( Y)w where z,y,z and w are elements of the field GR(p,m)to be specified
presently, then
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(Xo+ Xpr)2 =_ X2o +(Xox + XXo)prmod pr +

Now, since x.2 A over GR(vr, m), we can write xo2 A-Cpr for some 22 matrix C over the ring

GR(p,m). Hence,

(Xo+ Xpr)2 A +(XoX + XXo-C)prmod pr +

Therefore, (Xo + xpr) A over the tins GR(pr + 1,m), if and only if

over the field GR(p,m); i.e., if and only if

XoX + XX C

Cl c2)whereC=
c3 c4

Hence, we have to count the number of solutions, in GR(p,m), of the linear system

/ w x

c b 0 2a c

a+d 0 b b c2
0 a +d c c c3
c b 2d 0 c4

(rood p)

or

t z w x

ClCc(a + d) 0 bc be

0 a+d c c c3
0 0 2bcd 2abc --, c4 c1)b
0 0 0 E

E2

(rood p)

where E =2(a+d)(ad-bc) and E2=clad+cld2-c2cd-bc3d+c4bC-clbC. So, since 3 is non-scalar

and invertible, E # 0. Therefore, a straightforward inspection of the above last augmented matrix

will complete the proof of the theorem.
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